
A Pragmatic Introduction to
Secure Multi-Party Computation

David Evans
University of Virginia
evans@virginia.edu

Vladimir Kolesnikov
Georgia Institute of Technology

kolesnikov@gatech.edu

Mike Rosulek
Oregon State University

rosulekm@eecs.oregonstate.edu

Boston — Delft

A Pragmatic Introduction to
Secure Multi-Party Computation
David Evans1, Vladimir Kolesnikov2 and Mike Rosulek3

1University of Virginia; evans@virginia.edu
2Georgia Institute of Technology; kolesnikov@gatech.edu
3Oregon State University, rosulekm@eecs.oregonstate.edu

ABSTRACT

Secure multi-party computation (MPC) has evolved from a theo-
retical curiosity in the 1980s to a tool for building real systems
today. Over the past decade, MPC has been one of the most active
research areas in both theoretical and applied cryptography. This
book introduces several important MPC protocols, and surveys
methods for improving the efficiency of privacy-preserving ap-
plications built using MPC. Besides giving a broad overview of
the field and the insights of the main constructions, we overview
the most currently active areas of MPC research and aim to give
readers insights into what problems are practically solvable using
MPC today and how different threat models and assumptions
impact the practicality of different approaches.

David Evans, Vladimir Kolesnikov andMike Rosulek,APragmatic Introduction to SecureMulti-
Party Computation. NOW Publishers, 2018. (This version: April 5, 2021)

Contents

1 Introduction 5

1.1 Outsourced Computation . 6
1.2 Multi-Party Computation . 7
1.3 MPC Applications . 8
1.4 Overview . 14

2 Defining Multi-Party Computation 15

2.1 Notations and Conventions . 15
2.2 Basic Primitives . 17
2.3 Security of Multi-Party Computation 19
2.4 Specific Functionalities of Interest 28
2.5 Further Reading . 31

3 Fundamental MPC Protocols 32

3.1 Yao’s Garbled Circuits Protocol 33
3.2 Goldreich-Micali-Wigderson (GMW) Protocol 37
3.3 BGW protocol . 42
3.4 MPC From Preprocessed Multiplication Triples 44
3.5 Constant-Round Multi-Party Computation: BMR 47
3.6 Information-Theoretic Garbled Circuits 50

3

3.7 Oblivious Transfer . 54
3.8 Custom Protocols . 59
3.9 Further Reading . 63

4 Implementation Techniques 65

4.1 Less Expensive Garbling . 66
4.2 Optimizing Circuits . 74
4.3 Protocol Execution . 79
4.4 Programming Tools . 83
4.5 Further Reading . 85

5 Oblivious Data Structures 87

5.1 Tailored Oblivious Data Structures 88
5.2 RAM-Based MPC . 92
5.3 Tree-Based RAM-MPC . 93
5.4 Square-Root RAM-MPC . 96
5.5 Floram . 98
5.6 Further Reading . 101

6 Malicious Security 102

6.1 Cut-and-Choose . 102
6.2 Input Recovery Technique . 107
6.3 Batched Cut-and-Choose . 109
6.4 Gate-level Cut-and-Choose: LEGO 110
6.5 Zero-Knowledge Proofs . 113
6.6 Authenticated Secret Sharing: BDOZ and SPDZ 116
6.7 Authenticated Garbling . 121
6.8 Further Reading . 124

7 Alternative Threat Models 126

7.1 Honest Majority . 127
7.2 Asymmetric Trust . 131
7.3 Covert Security . 133
7.4 Publicly Verifiable Covert (PVC) Security 137

4

7.5 Reducing Communication in Cut-and-Choose Protocols 141
7.6 Trading Off Leakage for Efficiency 142
7.7 Further Reading . 145

8 Conclusion 148

Acknowledgements 152

References 154

1
Introduction

Secure multi-party computation (MPC) protocols enable a group to jointly
perform a computation without disclosing any participant’s private inputs. The
participants agree on a function to compute, and then can use an MPC protocol
to jointly compute the output of that function on their secret inputs without
revealing them. Since its introduction by Andrew Yao in the 1980s, multi-party
computation has developed from a theoretical curiosity to an important tool
for building large-scale privacy-preserving applications.

This book provides an introduction to multi-party computation for practi-
tioners interested in building privacy-preserving applications and researchers
who want to work in the area. We provide an introduction to the foundations
of MPC and describe the current state of the art. Our goal is to enable readers
to understand what is possible today, and what may be possible in the future,
and to provide a starting point for building applications using MPC and for
developing MPC protocols, implementations, tools, and applications. As such,
we focus on practical aspects, and do not provide formal proofs.

The term secure computation is used to broadly encompass all methods for
performing computation on data while keeping that data secret. A computation
method may also allow participants to confirm the result is indeed the output of
the function on the provided inputs, which is known as verifiable computation.

5

6 Introduction

There are two main types of secure and verifiable computation: outsourced
computation and multi-party computation. Our focus is on multi-party compu-
tation, but first we briefly describe outsourced computation to distinguish it
from multi-party computation.

1.1 Outsourced Computation

In an outsourced computation, one party owns the data and wants to be able to
obtain the result of computation on that data. The second party receives and
stores the data in an encrypted form, performs computation on the encrypted
data, and provides the encrypted results to the data owner, without learning
anything about the input data, intermediate values, or final result. The data
owner can then decrypt the returned results to obtain the output.

Homomorphic encryption allows operations on encrypted data, and is
a natural primitive to implement outsourced computation. With partially-
homomorphic encryption schemes, only certain operations can be performed.
Several efficient partially-homomorphic encryption schemes are known (Pail-
lier, 1999; Naccache and Stern, 1998; Boneh et al., 2005). Systems built on
them are limited to specialized problems that can be framed in terms of the
supported operations.

To provide fully homomorphic encryption (FHE), it is necessary to support
a universal set of operations (e.g., both addition and multiplication, along with
constants 0 and 1) so that any finite function can be computed. Although the
goal of FHE was envisioned by Rivest et al. (1978), it took more than 30
years before the first FHE scheme was proposed by Gentry (2009), building
on lattice-based cryptography. Although there has been much recent interest
in implementing FHE schemes Gentry and Halevi (2011), Halevi and Shoup
(2015), and Chillotti et al. (2016), building secure, deployable, scalable systems
using FHE remains an elusive goal.

In their basic forms, FHE and MPC address different aspects of MPC, and
as such shouldn’t be directly compared. They do, however, provide similar
functionalities, and there are ways to adapt FHE to use multiple keys that
enables multi-party computation using FHE (Asharov et al., 2012; López-
Alt et al., 2012; Mukherjee and Wichs, 2016). FHE offers an asymptotic
communication improvement in comparison with MPC, but at the expense
of computational efficiency. State-of-the-art FHE implementations (Chillotti

1.2. Multi-Party Computation 7

et al., 2017) are thousands of times slower than two-party and multi-party
secure computation in typical applications and settings considered in literature.
Ultimately, the relative performance of FHE and MPC depends on the relative
costs of computation and bandwidth. For high-bandwidth settings, such as
where devices connected within a data center,MPC vastly outperforms FHE. As
FHE techniques improve, and the relative cost of bandwidth over computation
increases, FHE-based techniques may eventually become competitive with
MPC for many applications.

We do not specifically consider outsourcing computation or FHE further
in this book, but note that some of the techniques developed to improve
multi-party computation also apply to FHE and outsourcing. Shan et al. (2017)
provide a survey of work in the area of outsourcing.

1.2 Multi-Party Computation

The goal of secure multi-party computation (MPC) is to enable a group of
independent data owners who do not trust each other or any common third party
to jointly compute a function that depends on all of their private inputs. MPC
differs from outsourced computation in that all of the protocol participants
are data owners who participate in executing a protocol. Chapter 2 provides a
more formal definition of MPC, and introduces the most commonly considered
threat models.

Brief history of MPC. The idea of secure computation was introduced by
Andrew Yao in the early 1980s (Yao, 1982). That paper introduced a general
notion of secure computation, in which m parties want to jointly compute a
function f (x1, x2, . . . , xm) where xi is the ith party’s private input. In a series
of talks over the next few years (but not included in any formal publication),
Yao introduced the Garbled Circuits Protocol which we describe in detail in
Section 3.1. This protocol remains the basis for many of the most efficient
MPC implementations.

Secure computation was primarily of only theoretical interest for the next
twenty years; it was not until the 2000s that algorithmic improvements and
computing costs had reached a point where it became realistic to think about
building practical systems using general-purpose multi-party computation.

8 Introduction

Fairplay (Malkhi et al., 2004) was the first notable implementation of a general-
purpose secure computation system. Fairplay demonstrated the possibility that
a privacy-preserving program could be expressed in a high level language and
compiled to executables that could be run by the data-owning participants as
a multi-party protocol. However, its scalability and performance limited its
use to toy programs — the largest application reported in the Fairplay paper
was computing the median two sorted arrays where each party’s input is ten
16-bit numbers in sorted order, involving execution of 4383 gates and taking
over 7 seconds to execute (with both parties connected over a LAN). Since
then, the speed of MPC protocols has improved by more than five orders
of magnitude due to a combination of cryptographic, protocol, network and
hardware improvements. This enabled MPC applications to scale to a wide
range of interesting and important applications.

Generic and specialized MPC. Yao’s garbled circuits protocol is a generic
protocol—it can be used to compute any discrete function that can be rep-
resented as a fixed-size circuit. One important sub-area of MPC focuses on
specific functionalities, such as private set intersection (PSI). For specific
functionalities, there may be custom protocols that are much more efficient than
the best generic protocols. Specific functionalities can be interesting in their
own right, but also can be natural building blocks for use in other applications.
We focus mostly on generic MPC protocols, but include discussion of private
set intersection (Section 3.8.1) as a particularly useful functionality.

1.3 MPC Applications

MPC enables privacy-preserving applications where multiple mutually dis-
trusting data owners cooperate to compute a function. Here, we highlight a
few illustrative examples of privacy-preserving applications that can be built
using MPC. This list is far from exhaustive, and is meant merely to give an
idea of the range and scale of MPC applications.

Yao’s Millionaires Problem. The toy problem that was used to introduce
secure computation is not meant as a useful application. Yao (1982) introduces
it simply: “Two millionaires wish to know who is richer; however, they do not
want to find out inadvertently any additional information about each other’s

1.3. MPC Applications 9

wealth.” That is, the goal is to compute the Boolean result of x1 ≤ x2 where
x1 is the first party’s private input and x2 is the second party’s private input.
Although it is a toy problem, Yao’s Millionaires Problem can still be useful for
illustrating issues in MPC applications.

Secure auctions. The need for privacy in auctions is well understood.
Indeed, it is crucial for all participants, both bidders and sellers, to be able
to rely on the privacy and non-malleability of bids. Bid privacy requires that
no player may learn any other player’s bid (other than perhaps revealing the
winning bid upon the completion of the auction). Bid non-malleability means
that a player’s bid may not be manipulated to generate a related bid. For
example, if a party generates a bid of $n, then another party should not be
able to use this bid to produce a bid of $n + 1. Note that bid privacy does
not necessarily imply bid non-malleability — indeed it is possible to design
auction protocols that would hide a bid of $n while still allowing others to
generate a related bid $n + 1.

These properties are crucial in many standard bidding processes. For
example, a sealed bid auction is an auction where bidders submit private
(sealed) bids in attempts to purchase property, selling to the highest bidder.
Clearly, the first bidder’s bid value must be kept secret from other potential
bidders to prevent those bidders from having an unfair advantage. Similarly,
bid malleability may allow a dishonest bidder Bob to present a bid just slightly
over Alice’s bid, again, gaining an unfair advantage. Finally, the auction itself
must be conducted correctly, awarding the item to the highest bidder for the
amount of their bid.

A Vickrey auction is a type of sealed-bid auction where instead paying the
value of their own bid, the highest bidder wins but the price paid is the value
of the second-highest bid. This type of auction gives bidders an incentive to
bid their true value, but requires privacy and non-malleability of each bid, and
correctness in determining the winner and price.

MPC can be used to easily achieve all these features since it is only
necessary to embed the desired properties into the function used to jointly
execute the auction. All the participants can verify the function and then rely on
the MPC protocol to provide high confidence that the auction will be conducted
confidentially and fairly.

10 Introduction

Voting. Secure electronic voting, in a simple form, is simply computation of
the addition function which tallies the vote. Privacy and non-malleability of
the vote (properties discussed above in the context of auctions) are essential
for similar technical reasons. Additionally, because voting is a fundamental
civil process, these properties are often asserted by legislation.

As a side note, we remark that voting is an example of an application which
may require properties not covered by the standard MPC security definitions.
In particular, the property of coercion resistance is not standard in MPC (but
can be formally expressed and achieved (Küsters et al., 2012)). The issue here
is the ability of voters to prove to a third party how they voted. If such a proof
is possible (e.g., a proof might exhibit the randomness used in generating the
vote, which the adversary may have seen), then voter coercion is also possible.
We don’t delve into the specific aspects of secure voting beyond listing it here
as a natural application of MPC.

Secure machine learning. MPC can be used to enable privacy in both the
inference and training phases of machine learning systems.

Oblivious model inference allows a client to submit a request to a server
holding a pre-trained model, keeping the request private from the server S and
the model private from the client C. In this setting, the inputs to the MPC are
the private model from S, and the private test input from C, and the output
(decoded only for C) is the model’s prediction. An example of recent work in
this setting include MiniONN (Liu et al., 2017), which provided a mechanism
for allowing any standard neural network to be converted to an oblivious model
service using a combination of MPC and homomorphic encryption techniques.

In the training phase, MPC can be used to enable a group of parties to
train a model based on their combined data without exposing that data. For the
large scale data sets needed for most machine learning applications, it is not
feasible to perform training across private data sets as a generic many-party
computation. Instead, hybrid approaches have been designed that combine
MPC with homomorphic encryption (Nikolaenko et al., 2013b; Gascón et al.,
2017) or develop custom protocols to perform secure arithmetic operations
efficiently (Mohassel and Zhang, 2017). These approaches can scale to data
sets containing many millions of elements.

1.3. MPC Applications 11

Other applications. Many other interesting applications have been proposed
for using MPC to enable privacy. A few examples include privacy-preserving
network security monitoring (Burkhart et al., 2010), privacy-preserving ge-
nomics (Wang et al., 2015a; Jagadeesh et al., 2017), private stable match-
ing (Doerner et al., 2016), contact discovery (Li et al., 2013; De Cristofaro
et al., 2013), ad conversion (Kreuter, 2017), and spam filtering on encrypted
email (Gupta et al., 2017).

1.3.1 Deployments

Although MPC has seen much success as a research area and in experimental
use, we are still in the early stages of deploying MPC solutions to real
problems. Successful deployment of an MPC protocol to solve a problem
involving independent andmutually distrusting data owners requires addressing
a number of challenging problems beyond the MPC execution itself. Examples
of these problems include building confidence in the system that will execute
the protocol, understanding what sensitive information might be inferred from
the revealed output of the MPC, and enabling decision makers charged with
protecting sensitive data but without technical cryptography background to
understand the security implications of participating in the MPC.

Despite these challenges, there have been several successful deployments
of MPC and a number of companies now focus on providing MPC-based
solutions. We emphasize that in this early stage of MPC penetration and
awareness, MPC is primarily deployed as an enabler of data sharing. In
other words, organizations are typically not seeking to use MPC to add a
layer of privacy in an otherwise viable application (we believe this is yet
forthcoming). Rather, MPC is used to enable a feature or an entire application,
which otherwise would not be possible (or would require trust in specialized
hardware), due to the value of the shared data, protective privacy legislation,
or mistrust of the participants.

Danish sugar beets auction. In what is widely considered to be the first
commercial application of MPC, Danish researchers collaborated with the
Danish government and stakeholders to create an auction and bidding platform
for sugar beet production contracts. As reported in Bogetoft et al. (2009), bid
privacy and auction security were seen as essential for auction participants.

12 Introduction

The farmers felt that their bids reflected their capabilities and costs, which
they did not want to reveal to Danisco, the only company in Denmark that
processed sugar beets. At the same time, Danisco needed to be involved in the
auction as the contracts were securities directly affecting the company.

The auction was implemented as a three-party MPC among representatives
for Danisco, the farmer’s association (DKS) and the researchers (SIMAP
project). As explained by Bogetoft et al. (2009), a three party solution was
selected, partly because it was natural in the given scenario, but also because it
allowed using efficient information theoretic tools such as secret sharing. The
project led to the formation of a company, Partisia, that uses MPC to support
auctions for industries such as spectrum and energy markets, as well as related
applications such as data exchange (Gallagher et al., 2017).

Estonian students study. In Estonia, a country with arguably the most
advanced e-government and technology awareness, alarms were raised about
graduation rates of IT students. Surprisingly, in 2012, nearly 43% of IT
students enrolled in the previous five years had failed to graduate. One potential
explanation considered was that the IT industry was hiring too aggressively,
luring students away from completing their studies. The Estonian Association
of Information and Communication Technology wanted to investigate by
mining education and tax records to see if there was a correlation. However,
privacy legislation prevented data sharing across the Ministry of Education
and the Tax Board. In fact, k-anonymity-based sharing was allowed, but it
would have resulted in low-quality analysis, since many students would not
have had sufficiently large groups of peers with similar qualities.

MPC provided a solution, facilitated by the Estonian company Cybernetica
using their Sharemind framework (Bogdanov et al., 2008a). The data analysis
was done as a three-party computation, with servers representing the Estonian
Information System’s Authority, the Ministry of Finance, and Cybernetica. The
study, reported in Cybernetica (2015) and Bogdanov (2015), found that there
was no correlation between working during studies and failure to graduate on
time, but that more education was correlated with higher income.

Boston wage equity study. An initiative of the City of Boston and the
BostonWomen’sWorkforce Council (BWWC) aims to identify salary inequities

1.3. MPC Applications 13

across various employee gender and ethnic demographics at different levels of
employment, from executive to entry-level positions. This initiative is widely
supported by the Boston area organizations, but privacy concerns prevented
direct sharing of salary data. In response, Boston University researchers
designed and implemented a web-based MPC aggregation tool, which allowed
employers to submit the salary data privately and with full technical and legal
protection, for the purposes of the study.

As reported by Bestavros et al. (2017), MPC enabled the BWWC to
conduct their analysis and produce a report presenting their findings. The effort
included a series of meetings with stakeholders to convey the risks and benefits
of participating in the MPC, and considered the importance of addressing
usability and trust concerns. One indirect result of this work is inclusion of
secure multi-party computation as a requirement in a bill for student data
analysis recently introduced in the United States Senate (Wyden, 2017).

Key management. One of the biggest problems faced by organizations today
is safeguarding sensitive data as it is being used. This is best illustrated using
the example of authentication keys. This use case lies at the core of the product
offering of Unbound Tech (Unbound Tech, 2018). Unlike other uses of MPC
where the goal is to protect data owned by multiple parties from exposure, here
the goal is to protect from compromise the data owned by a single entity.

To enable a secure login facility, an organization must maintain private
keys. Let’s consider the example of shared-key authentication, where each user
has shared a randomly chosen secret key with the organization. Each time the
user U authenticates, the organization’s server S looks up the database of keys
and retrieves U’s public key skU , which is then used to authenticate and admit
U to the network by running key exchange.

The security community has long accepted that it is nearly impossible
to operate a fully secure complex system, and an adversary will be able to
penetrate and stealthily take control over some of the network nodes. Such
an advanced adversary, sometimes called Advanced Persistent Threat (APT),
aims to quietly undermine the organization. Naturally, the most prized target
for APT and other types of attackers is the key server.

MPC can play a significant role in hardening the key server by splitting
its functionality into two (or more) hosts, say, S1 and S2, and secret-sharing

14 Introduction

key material among the two servers. Now, an attacker must compromise both
S1 and S2 to gain access to the keys. We can run S1 and S2 on two different
software stacks to minimize the chance that they will both be vulnerable to
the exploit available to the malware, and operate them using two different
sub-organizations to minimize insider threats. Of course, routine execution
does need access to the keys to provide authentication service; at the same time,
key should never be reconstructed as the reconstructing party will be the target
of the APT attack. Instead, the three players, S1, S2, and the authenticating user
U, will run the authentication inside MPC, without ever reconstructing any
secrets, thus removing the singular vulnerability and hardening the defense.

1.4 Overview

Because MPC is a vibrant and active research area, it is possible to cover only
a small fraction of the most important work in this book. We mainly discuss
generic MPC techniques, focusing mostly on the two-party scenario, and
emphasizing a setting where all but one of the parties may be corrupted. In the
next chapter, we provide a formal definition of secure multi-party computation
and introduce security models that are widely-used in MPC. Although we
do not include formal security proofs in this book, it is essential to have
clear definitions to understand the specific guarantees that MPC provides.
Chapter 3 describes several fundamental MPC protocols, focusing on the most
widely-used protocols that resist any number of corruptions. Chapter 4 surveys
techniques that have been developed to enable efficient implementations of
MPC protocols, and Chapter 5 describes methods that have been used to
provide sub-linear memory abstractions for MPC.

Chapters 3–5 target the weak semi-honest adversary model for MPC
(defined in Chapter 2), in which is it assumed that all parties follow the protocol
as specified. In Chapter 6, we consider how MPC protocols can be hardened
to provide security against active adversaries, and Chapter 7 explores some
alternative threat models that enable trade-offs between security and efficiency.
We conclude in Chapter 8, outlining the trajectory of MPC research and
practice, and suggesting possible directions for the future.

