
7
Alternative Threat Models

In this chapter, we consider some different assumptions about threats that lead
to MPC protocols offering appealing security-performance trade-offs. First,
we relax the assumption that any number of participants may be dishonest and
discuss protocols designed to provide security only when a majority of the
participants behave honestly. Assuming an honest majority allows for dramatic
performance improvements. Then, we consider alternatives to the semi-honest
and malicious models that have become standard in MPC literature, while still
assuming that any number of participants may be corrupted. As discussed in
the previous chapter, semi-honest protocols can be elevated into the malicious
model, but this transformation incurs a significant cost overhead which may
not be acceptable in practice. At the same time, real applications present a
far more nuanced set of performance and security constraints. This prompted
research into security models that offer richer trade-offs between security and
performance. Section 7.1 discusses protocols designed to take advantage of the
assumption that the majority of participants are honest. Section 7.2 discusses
scenarios there trust between the participants is asymmetric, and the remaining
sections present protocols designed to provide attractive security-performance
trade-offs in settings motivated by practical scenarios.

126



7.1. Honest Majority 127

7.1 Honest Majority

So far we have considered security against adversaries who may corrupt any
number of the participants. Since the purpose of security is to protect the
honest parties, the worst-case scenario for a protocol is that n − 1 out of n
parties are corrupted.1 In the two-party case, it is indeed the only sensible
choice to consider one out of the two parties to be corrupt.

However, in the multi-party setting it often is reasonable to consider
restricted adversaries that cannot corrupt as many parties as they want. A
natural threshold is honest majority, where the adversary may corrupt strictly
less than n

2 of the n parties. One reason this threshold is natural is that, assuming
an honest majority, every function has an information-theoretically secure
protocol (Ben-Or et al., 1988; Chaum et al., 1988), while there exist functions
with no such protocol in the presence of dn/2e corrupt parties.

7.1.1 Building on Garbled Circuits

Yao’s protocol (Section 3.1) provides semi-honest security, but to make it
secure against malicious adversaries requires significant modifications with
high computation and communication overhead (Section 6.1).

Mohassel et al. (2015) propose a simple 3-party variant of Yao’s protocol
that is secure against a malicious adversary that corrupts at most one party
(that is, the protocol is secure assuming an honest majority). Recall that the
main challenge in making Yao’s protocol secure against malicious attacks is
to ensure that the garbled circuit is generated correctly. In the protocol of
Mohassel et al. (2015), the main idea is to let two parties P1,P2 play the role
of circuit garbler and one party P3 play the role of circuit evaluator. First, P1
and P2 agree on randomness to be used in garbling, then they both garble the
designated circuit with the same randomness, and send it to P3. Since at most
one of the garblers is corrupt (by the honest majority assumption), at least one
of the garblers is guaranteed to be honest. Therefore, P3 only needs to check
that both garblers send identical garbled circuits. This ensures that the (unique)

1We consider only static security, where the adversary’s choice of the corrupted parties
is made once-and-for-all, at the beginning of the interaction. It is also possible to consider
adaptive security, where parties can become corrupted throughout the protocol’s execution.
In the adpative setting, it does indeed make sense to consider scenarios where all parties are
(eventually) corrupted.



128 Alternative Threat Models

garbled circuit is generated correctly. Other protocol issues relevant for the
malicious case (like obtaining garbled inputs) are handled in a similar way, by
checking responses from the two garbling parties for consistency.

One additional advantage of the 3-party setting is that there is no need for
oblivious transfer (OT) as in the 2-party setting. Instead of using OT to deliver
garbled inputs to the evaluator P3, we can let P3 secret-share its input and send
one share (in the clear!) to each of P1 and P2. These garblers can send garbled
inputs for each of these shares, and the circuit can be modified to reconstruct
these shares before running the desired computation. Some care is required to
ensure that the garblers send the correct garbled inputs in this way (Mohassel
et al. (2015) provide details). Overall, the result is a protocol that avoids all
OT and thus uses only inexpensive symmetric-key cryptography.

The basic protocol of Mohassel et al. (2015) has been generalized to
provide additional properties like fairness (if the adversary learns the output,
then the honest parties do) and guaranteed output delivery (all honest parties
will receive output) (Patra and Ravi, 2018). Chandran et al. (2017) extend it to
provide security against roughly

√
n out of n corrupt parties.

7.1.2 Three-Party Secret Sharing

The honest-majority 3-party setting also enables some of the fastest general-
purpose MPC implementations to date. These protocols achieve their high
performance due to their extremely low communication costs — in some cases,
as little as one bit per gate of the circuit!

It is possible to securely realize any functionality information-theoretically
in the presence of an honest majority, using the classical protocols of Ben-Or
et al. (1988) and Chaum et al. (1988). In these protocols, every wire in the
circuit holds a value v, and the invariant of these protocols is that the parties
collectively hold some additive secret sharing of v. As in Section 3.4, let [v]
denote such a sharing of v. For an addition gate z = x + y, the parties can
compute a sharing [x + y] from sharings [x] and [y] by local computation only,
due to the additive homomorphism property of the sharing scheme. However,
interaction and communication are required for multiplication gates to compute
a sharing [xy] from sharings [x] and [y].

In Section 3.4 we discussed how to perform such multiplications when
pre-processed triples of the form [a], [b], [ab] are available. It is also possible



7.1. Honest Majority 129

to perform multiplications with all effort taking place during the protocol (i.e.,
not in a pre-processing phase). For example, the protocol of Ben-Or et al.
(1988) uses Shamir secret sharing for its sharings [v], and uses an interactive
multiplication subprotocol in which all parties generate shares-of-shares and
combine them linearly.

The protocols in this section are instances of this general paradigm, highly
specialized for the case of 3 parties and 1 corruption (“1-out-of-3” setting).
Both the method of sharing and the corresponding secure multiplication
subprotocol are the target of considerable optimizations.

The Sharemind protocol of Bogdanov et al. (2008a) was the first to
demonstrate high performance in this setting. Generally speaking, for the
1-out-of-3 case, it is possible to use a secret sharing scheme with threshold 2
(so that any 2 shares determine the secret). The Sharemind protocol instead
uses 3-out-of-3 additive sharing, so that in [v] party Pi holds value vi such that
v = v1 + v2 + v3 (in an appropriate ring, such as Z2 for Boolean circuits). This
choice leads to a simpler multiplication subprotocol in which each party sends
7 ring elements.

Launchbury et al. (2012) describe an alternative approach in which
each party sends only 3 ring elements per multiplication. Furthermore, the
communication is in a round-robin pattern, where the only communication is
in the directions P1 → P2 → P3 → P1. The idea behind multiplication is as
follows. Suppose two values x and y are additively shared as x = x1 + x2 + x3
and y = y1 + y2 + y3, where party Pi holds xi, yi. To multiply x and y, it
suffices to compute all terms of the form xa · yb for a, b ∈ {1, 2, 3}. Already Pi

has enough information to compute xiyi, but the other terms are problematic.
However, if each Pi sends its shares around the circle (i.e., P1 sends to P2, P2
sends to P3, and P3 to P1), then every term of the form xayb will computable
by some party. Each party will now hold two of the xi shares and two of the yi
shares. This still perfectly hides the values of x and y from a single corrupt
party since we are using 3-out-of-3 sharing. The only problem is that shares
of xy are correlated to shares of x and y, while it is necessary to have an
independent sharing of xy. So, the parties generate a random additive sharing
of zero and locally add it to their (non-random) sharing of xy.

Araki et al. (2016) propose a secret sharing scheme that is a variant of



130 Alternative Threat Models

replicated secret sharing. The sharing of a value v is defined as:

P1 holds (x1, x3 − v) P2 holds (x2, x1 − v) P3 holds (x3, x2 − v)

where the xi values are a random sharing of zero: 0 = x1+x2+x3. They describe
a multiplication subprotocol in which each party sends only one ring element
(in a round-robin fashion as above).2 One of the ways in which communication
is minimized in this approach is that the multiplication subprotocol generates
its needed randomness without any interaction. Suppose there are three keys,
k1, k2, k3, for a pseudorandom function where P1 holds (k1, k2), P2 holds
(k2, k3), and P3 holds (k3, k1). Then, the parties can non-interactively generate
an unbounded number of random sharings of zero. The i-th sharing of zero is
generated via:

• P1 computes s1 = Fk1(i) − Fk2(i)

• P2 computes s2 = Fk2(i) − Fk3(i)

• P3 computes s3 = Fk3(i) − Fk1(i)

Here F is a pseudorandom function whose output is in the field. As desired,
s1 + s2 + s3 = 0 and the sharing is indeed random from the perspective of a
single corrupt party. Such random sharings of zero are the only randomness
needed by the multiplication subprotocol of Araki et al. (2016).

As a result of such minimal communication, Araki et al. (2016) report
MPC performance of over 7 billion gates per second. This performance suffices
to replace a single Kerberos authentication server with 3 servers running MPC,
so that no single server ever sees user passwords, and is able to support loads
of 35,000 logins per second.

These results are secure against one semi-honest corrupt party. Furukawa
et al. (2017) extend the approach of Araki et al. (2016), and show how to
achieve security against one malicious party (for the case of Boolean circuits).
Their protocol follows the high-level approach described in Section 3.4, by
generating multiplication triples [a], [b], [ab]. These triples use the secret-
sharing technique of Araki et al. (2016). The starting point to generate such
triples is also the multiplication protocol of Araki et al. (2016). Here, an

2Their protocol works as long as the number 3 is invertible in the ring. In particular, it can
be used for Boolean arithmetic over Z2 as well as Z2k .



7.2. Asymmetric Trust 131

important property of this protocol is used: a single corrupt party cannot cause
the output of multiplication to be an invalid sharing, only a (valid) sharing of a
different value. Hence, the adversary can cause any triple generated in this way
to have the form [a], [b], [ab] or [a], [b], [ab] (since this idea only applies for
sharings of single bits). Starting with this observation, collections of triples
are used to “cross-check” each other and guarantee their correctness.

7.2 Asymmetric Trust

Although the standard models assume all parties are equally distrusting, many
realistic scenarios have asymmetric trust. For example, consider the setting
where one of the two participants of a computation is a well-known business,
such as a bank (denoted by P1), providing service to another, less trusted,
participant, bank’s customer, denoted by P2. It may be safe to assume that P1 is
unlikely to actively engage in cheating by deviating from the prescribed protocol.
Indeed, banks today enjoy full customer trust and operate on all customer
data in plaintext. Customers are willing to rely on established regulatory and
legal systems, as well as the long-term reputation of the bank, rather than on
cryptographic mechanisms, to protect their funds and transactions. Today, we
not only trust the bank to correctly perform requested transactions, but we also
trust that the bank will not misuse our data and will keep it in confidence.

However, there may be several reasons why a cautious customer who trusts
the bank’s intent may want to withhold certain private information and execute
transactions via MPC. One is the unintentional data release. As with any
organization, the bank may be a target of cyber attacks, and data stored by
the bank, including customer data, may simply be stolen. Having employed
MPC to safeguard the data eliminates this possibility, since the bank will not
have the sensitive data in the first place. Another reason might be the legally
mandated audits and summons of the data. As an organization, a bank may
have a presence in several jurisdictions with different rules on data retention,
release and reporting. Again, MPC will serve as a protection for unpredictable
future data releases.

Hence, given the existing trust to the bank it seems reasonable to employ
semi-honest model to protect the customer. However, having upgraded cus-
tomer privacy by moving from plaintext operation to semi-honest MPC (and
correspondingly placing the customer as a semi-honest player), we now actually



132 Alternative Threat Models

greatly compromised bank’s security. Indeed, where previously the customer
has been a passive participant simply providing the input to the transaction,
now the customer has opportunities to cheat within the semi-honest MPC
protocol. Given the relative ease of creating an account at a bank, and the
opportunity for financial gain by an improperly conducted financial transaction,
a bank’s customer is naturally incentivized to cheat.

This scenario suggests a hybrid model where one player is assumed to be
semi-honest and the other is assumed to be malicious. Luckily, Yao’s GC and
many of its natural variants are already secure against malicious evaluator!
Indeed, assuming the OT protocol used by P2 to obtain its input wires provides
security against a malicious evaluator, P2, the GC evaluator proceeds simply
by decrypting garbled tables in a single, pre-determined way. Any deviation by
the GC evaluator in the GC evaluation will simply result in a failure to obtain
an output label. This is a very convenient feature of Yao’s GC, which allows
for an order of magnitude or more cost savings in settings where the security
policy can assume a semi-honest generator (P1).

Server-aided secure computation is another noteworthy example of taking
advantage of asymmetric trust. The Salus system (Kamara et al., 2012)
considers a natural setting where one participant is a special external party
without input or output, whose goal is to assist the other parties in securely
evaluating the function on their inputs. The external party might be a cloud
service provider with larger computational resources at its disposal and,
importantly, sufficient status to be partially trusted by all the other participants.
For example, this player may be trusted to behave semi-honestly, while other
players may be assumed to be malicious. An important assumption made by
Kamara et al. (2012) is that the server does not collude with any of the other
players, even if the server is malicious. Substantial performance improvements
can be obtained by the Salus systems and subsequent work by taking advantage
of the asymmetric trust and the collusion restriction. For example, Kamara
et al. (2014) present a server-aided private set intersection protocol, which,
in the case of the semi-honest server, computes PSI of billion-element sets in
about 580 seconds while sending about 12.4 GB of data.



7.3. Covert Security 133

7.3 Covert Security

While reasonable in many settings, at times the above semi-honest/malicious
asymmetric trust model is insufficient for applications where P1 may have
incentives to cheat. Even for a mostly trusted bank, cheating is nevertheless a
real possibility, and bank customers and even external auditors have no tools to
ensure compliance. At the same time, moving fully into the malicious model
will incur a large performance penalty that may not be acceptable.

An effective practical approach may be to enable probabilistic checks on
the generator, as first proposed by Aumann and Lindell (2007). Their idea is to
allow the evaluator (P2) to challenge the generator (P1) at random to prove
that the garbled circuit was constructed correctly. If P1 is unable to prove this,
then P2 will know that P1 is cheating and will react accordingly. The guarantee
achieved is that a cheating player will be caught with a certain fixed probability
(e.g., ε = 1

2 ) known as the deterrence factor.
This simple and natural idea can be formalized in the definition in several

ways. First, it is essential that P1 cannot forge an invalid proof or elude or
withdraw from a validity proof challenge on a garbled circuit it produced. On
the other hand, we accept that if P2 did not challenge P1 on an improperly-
generated circuit, then P1 was not caught cheating, and can win (i.e., learn
something about P2’s private input or corrupt the function output). However,
various privacy guarantees with respect to P2’s input may be considered.
Aumann and Lindell (2007) propose three formulations:

1. Failed simulation. The idea is to allow the simulator (of the cheating
party) to fail sometimes. “Fail” means that its output distribution is not
indistinguishable from the real one. This corresponds to an event of
successful cheating. The model guarantees that the probability that the
adversary is caught cheating is at least ε times the probability that the
simulator fails.

One serious issue with the above definition is that it only requires that if
cheating occurred in the real execution, the cheater will be caught with
probability ε . The definition does not prevent the cheating player from
deciding when to cheat (implicitly) based on the honest player’s input.
In particular, P1 could attempt cheat only on the more valuable inputs
of P2 (e.g., natural protocols exist which allow P1 to attempt to cheat



134 Alternative Threat Models

only when P2’s first bit is 0).

2. Explicit cheat. This formulation introduces an explicit ability to cheat
to an ideal-model adversary (i.e., the simulator). This only slightly
complicates the definition, but allows us to naturally prescribe that
cheating in the ideal model can only occur independently of the other
players’ inputs. In the ideal model, the cheating player, upon sending
a cheat instruction to the trusted party, will obtain the honest players’
inputs. At the same time, the honest players in the ideal model will
output corruptedi (i.e., detect cheating by Pi) with probability ε , thus
requiring that the same happens in the real model.

Although this model is much more convincing, it has the drawback that
the malicious player is allowed to obtain inputs of the honest parties
even when cheating is detected. As Aumann and Lindell noted, “there is
less deterrence to not rob a bank if when you are caught you are allowed
to keep the stolen money.” (Aumann and Lindell, 2007)

3. Strong explicit cheat. This is the same as the explicit cheat formulation,
with the exception that the cheating ideal-model adversary is not allowed
to obtain the honest players’ inputs in the case where cheating is detected.

The first two (strictly weaker) models of Aumann and Lindell (2007) did
not gain significant popularity mainly because the much stronger third model
admits protocols of the same or very similar efficiency as the weaker ones. The
strong explicit cheat model became standard due to its simplicity, effectiveness
in deterrence, and the discovery of simple and efficient protocols that achieve
it. We present one such simple and efficient 2PC protocol next.

7.3.1 Covert Two-Party Protocol

Since the work of Aumann and Lindell (2007), significant progress in efficient
OT has produced several extremely efficient malicious OT protocols (Asharov
et al., 2015b; Keller et al., 2015), with the latter having overhead over the semi-
honest OT of only 5%. As a result, we don’t consider covert OT security, and
assume a maliciously-secure OT building block. It is important to remember,
however, that a maliciously-secure protocol does not guarantee the players
submit prescribed inputs. In particular, while malicious OT ensures correct



7.3. Covert Security 135

and private OT execution, deviating players can submit arbitrary OT inputs,
such as invalid wire labels.

Next, we overview the method of Aumann and Lindell (2007) for building
a covert 2PC protocol from Yao’s GC and malicious OT. For simplicity, we
assume deterrence factor of ε = 1

2 . It is straightforward to efficiently generalize
this for any non-negligible ε . First, we present the basic idea and point out
missing pieces, which we then address.

Core Protocol. Aumann and Lindell go along the lines of the cut-and-
choose approach and propose that P1 generates and sends to P2 two GCs.
The two garbled circuits Ĉ0 and Ĉ1 are generated from random seeds s0 and
s1 respectively by expanding them using a pseudo-random generator (PRG).
Upon receipt, P2 flips a coin b ∈ {0, 1} and asks P1 to open the circuit Ĉb
by providing sb. Because the GCs are constructed deterministically from a
seed via a PRG expansion, opening is achieved simply by sending the seed to
the verifier. This allows P2 to check the correctness of the generated garbled
circuit Ĉb by constructing the same garbled circuit from the provided seed, and
comparing it to the copy that was sent. This guarantees that a badly constructed
Ĉ will be detected with probability ε = 1

2 , which is needed to satisfy the strong
explicit cheat definition.

However, a malicious P1 can also perform OT-related attacks. For example,
P1 can flip the semantics of the labels on P2’s input wires, effectively silently
flipping P2’s input. Similarly, P1 can set both P2’s input wire labels to the
same value, effectively setting P2’s input to a fixed value. Another attack is
the selective abort attack discussed in Section 6.1, where one of the two OT
secrets is set to be a dummy random value, resulting in an selectively aborted
evaluation that allows P1 to learn a bit of P2’s input.

As a result, we must ensure that a OT input substitution by P1 is caught
at least with probability equal to the deterrence factor ε . Note that input
substitution by P2 is allowed as it simply corresponds to P2 choosing a different
MPC input, a behavior allowed by the security definition.

Next, we discuss defenses to these attacks.

Preventing OT Input Substitution and Selective Abort. The solution en-
hances the basic protocol described above to provide additional protections



136 Alternative Threat Models

against OT input substitution by P1. First, recall that the entire GC is generated
from a seed, which includes the input wire labels. Further, OT is run prior
to P2’s challenge being announced, so P1 will not be able to adjust its tactic
in response to the challenge and provide honest OT inputs in the challenge
execution and malicious OT inputs in the live execution. At the same time, OT
delivers only one of the two inputs to P2, and P2 cannot verify that the other
OT input was correctly submitted by P1, leaving open the possibility of the
selective abort attack, described above.

This is not satisfactory in the strong explicit cheat formulation, since this
model requires that if cheating is detected, the dishonest party cannot learn
anything about the honest player’s input. There are several ways to address this.
Aumann and Lindell suggest using the inputs XOR tree idea, which was earlier
proposed by Lindell and Pinkas (2007). The idea is to modify the circuit C
being computed and correspondingly change the semantics of P2’s input wires
as follows. Instead of each of P2’s input bit xi , the new circuit C′ will have σ
inputs x1

i , ..., xσi , which are random with the restriction that xi =
⊕

j∈{1..σ } x j
i .

For each xi of C, the new circuit C′ will start by xor-ing the σ inputs x1
i , ..., xσi

so as to recover xi inside the circuit. C′ then continues as the original C would
with the reconstructed inputs. The new circuit computes the same function,
but now P1 can only learn information if it is correctly guesses all of the σ
random x j

i values, an event occurring with statistically negligible probability.

Alternate Keys. We additionally mention the following mainly theoretical
attack discussed by Aumann and Lindell (2007) to underline the subtleties
of even seemingly simple MPC protocols. The issue is that an adversary can
construct (at least in theory) a garbled circuit with two sets of keys, where
one set of keys decrypts the circuit to the specified one and another set of
keys decrypts the circuit to an incorrect one. This is not a real issue in most
natural GC constructions, but one can construct a tailored GC protocol with this
property. The existence of two sets of keys is problematic because the adversary
can supply “correct keys” to the circuits that are opened and “incorrect keys”
to the circuit that is evaluated. Aumann and Lindell prevent this by having
P1 commit to these keys and send the commitments together with the garbled
circuits. Then, instead of P1 just sending the keys associated with its input, it
sends the appropriate decommitments.



7.4. Publicly Verifiable Covert (PVC) Security 137

Protocol Completion. Finally, to conclude the informal description of the
protocol, after P2 successfully conducts the above checks, it proceeds by
evaluating Ĉ1−b and obtaining the output which is then also sent to P1. It now
can be shown that malicious behavior of P1 can be caught with probability
ε = 1

2 . We note that this probability can be increased simply by having P1
generate and send more circuits, all but one of which are opened and checked.
Aumann and Lindell (2007) provide a detailed treatment of the definitions and
the formal protocol construction.

7.4 Publicly Verifiable Covert (PVC) Security

In the covert security model, a party can deviate arbitrarily from the protocol
description but is caught with a fixed probability ε , called the deterrence
factor. In many practical scenarios, this guaranteed risk of being caught (likely
resulting in loss of business or embarrassment) is sufficient to deter would-be
cheaters, and covert protocols are much more efficient and simpler than their
malicious counterparts.

At the same time, the cheating deterrent introduced by the covert model is
relatively weak. Indeed, an honest party catching a cheater certainly knows
what happened and can respond accordingly (e.g., by taking their business
elsewhere). However, the impact is largely limited to this, since the honest
player cannot credibly accuse the cheater publicly. Doing so might require the
honest player to reveal its private inputs (hence, violate its security), or the
protocol may simply not authenticate messages as coming from a specific party.
If, however, credible public accusation (i.e., a publicly-verifiable cryptographic
proof of the cheating) were possible, the deterrent for the cheater would be
much greater: suddenly, all the cheater’s customers and regulators would be
aware of the cheating and thus any cheating may affect the cheater’s global
customer base.

The addition of credible accusation greatly improves the covert model
even in scenarios with a small number of players, such as those involving the
government. Consider, for example, the setting where two agencies are engaged
in secure computation on their respective classified data. The covert model
may often be insufficient here. Indeed, consider the case where one of the
two players deviates from the protocol, perhaps due to an insider attack. The
honest player detects this, but non-participants are now faced with the problem



138 Alternative Threat Models

of identifying the culprit across two domains, where the communication is
greatly restricted due to trust, policy, data privacy legislation, or all of the
above. On the other hand, credible accusation immediately provides the ability
to exclude the honest player from the suspect list, and focus on tracking the
problem within the misbehaving organization, which is dramatically simpler.

PVC Definition. Asharov and Orlandi (2012) proposed a security model,
covert with public verifiability, and an associated protocol, motivated by these
concerns. At a high level, they proposed that when cheating is detected, the
honest player can publish a “certificate of cheating” that can be checked by any
third party. We will call this model PVC, following the notation of Kolesnikov
and Malozemoff (2015), who proposed an improved protocol in this model.

Informally, the PVC definition requires the following three properties to
hold with overwhelming probability:

1. Whenever cheating is detected, the honest party can produce a publicly
verifiable proof of cheating.

2. Proof of cheating cannot be forged. That is, an honest player cannot be
accused of cheating with a proof that verifies.

3. Proof of cheating does not reveal honest party’s private data (including
the data used in the execution where cheating occurred).

Asharov-Orlandi PVC Protocol. The Asharov-Orlandi protocol has perfor-
mance similar to the original covert protocol of Aumann and Lindell (2007) on
which it is based, with the exception of requiring signed-OT, a special form of
oblivious transfer (OT). Their signed-OT construction, which we summarize
next, is based on the OT of Peikert et al. (2008), and thus requires several
expensive public-key operations per OT instance. After this, we describe sev-
eral performance improvements to it proposed by Kolesnikov and Malozemoff
(2015), the most important of which is a novel signed-OT extension protocol
that eliminates per-instance public-key operations.

As usual, we make P1 the circuit generator, P2 the evaluator, and use C to
represent the circuit to execute. Recall from Section 7.2 that in the standard
Yao’s garbled circuit construction in the semi-honest model, a malicious
evaluator (P2) cannot cheat during the GC evaluation. Hence, this protection



7.4. Publicly Verifiable Covert (PVC) Security 139

comes for free with natural GC protocols, and we only need to consider a
malicious generator (P1).

Recall the selective failure attack on P2’s input wires, where P1 sends P2
(via OT) an invalid wire label for one of P2’s two possible inputs and learns
which input bit P2 selected based on whether or not P2 aborts. To protect
against this attack, the parties construct a new circuit C′ that prepends an input
XOR tree in C as discussed in Section 7.3. To elevate to the covert model, P1
then constructs λ (the GC replication factor) garblings of C′ and P2 randomly
selects λ − 1 of them and checks they are correctly constructed, and evaluates
the remaining C′ garbled circuit to derive the output.

We now adapt this protocol to the PVC setting by allowing P2 to not only
detect cheating, but also to obtain a publicly verifiable proof of cheating if
cheating is detected. The basic idea is to require the generator P1 to establish
a public-private keypair, and to sign the messages it sends. The intent is
that signed inconsistent messages (e.g., badly formed GCs) can be published
and will serve as a convincing proof of cheating. The main difficulty of this
approach is ensuring that neither party can improve its odds by selectively
aborting. For example, if P1 could abort whenever P2’s challenge would reveal
that P1 is cheating (and hence avoid sending a signed inconsistent transcript),
this would enable P1 to cheat without the risk of generating a proof of cheating.

Asharov and Orlandi address this by preventing P1 from knowing P2’s
challenge when producing the response. In their protocol, P1 sends the GCs to
P2 and opens the checked circuits by responding to the challenge through a
1-out-of-λ OT. For this, P1 first sends all (signed) GCs to P2. Then the players
run OT, where in the i-th input to the OT P1 provides openings (seeds) for all
the GCs except for the i-th, as well as the input wire labels needed to evaluate
Ĉi. Party P2 inputs a random γ ∈R [λ], so receives the seeds for all circuits
other than Ĉγ from the OT and the wire labels for its input for Ĉγ. Then, P2
checks that all GCs besides Ĉγ are constructed correctly; if the check passes,
P2 evaluates Ĉγ. Thus, P1 does not know which GC is being evaluated, and
which ones are checked.

However, a more careful examination shows that this actually does not
quite get us to the PVC goal. Indeed, a malicious P1 simply can include invalid
openings for the OT secrets which correspond to the undesirable choice of
the challenge γ. The Asharov-Orlandi protocol addresses this by having P1



140 Alternative Threat Models

sign all its messages as well as using a signed-OT in place of all standard OTs
(including wire label transfers and GC openings). Informally, the signed-OT
functionality proceeds as follows. Rather than the receiver R getting message
mb (which might include a signature that S produced) from the sender S
for choice bit b, the signature component of signed-OT is explicit in the OT
definition. Namely, we require that R receives ((b,mb),Sig), where Sig is S’s
valid signature of (b,mb). This guarantees that R will always receive a valid
signature on the OT output it receives. Thus, if R’s challenge detects cheating,
the (inconsistent) transcript will be signed by S, so can be used as proof
of this cheating. Asharov and Orlandi (2012) show that this construction is
ε-PVC-secure for ε = (1 − 1/λ)(1 − 2−ν+1), where ν is the replication factor
of the employed XOR tree, discussed above.

We note that their signed-OT heavily relies on public-key operations, and
cannot use the much more efficient OT extension.

Signed-OT Extension. Kolesnikov and Malozemoff (2015) proposed an
efficient signed-OT extension protocol built on the malicious OT extension
of Asharov et al. (2015b). Informally, signed-OT extension (similarly to the
signed-OT of Asharov-Orlandi) ensures that (1) a cheating sender S is held
accountable in the form of a “certificate of cheating” that the honest receiver
R can generate, (2) the certificate of cheating does not reveal honest player’s
inputs and, (3) a malicious R cannot defame an honest S by fabricating a false
“certificate of cheating”.

Achieving the first goal is fairly straightforward and can be done by having
S simply sign all its messages sent in the course of executing OT extension.
Then, the view of R, which will now include messages signed by S, will
exhibit inconsistency. The challenge is in simultaneously:

1. protecting the privacy of R’s input—this is a concern since the view of
R exhibiting inconsistency also may include R’s input, and

2. preventing a malicious R from manipulating the part of the view which
is not under S’s signature to generate a false accusation of cheating.

Since the view of R plays the role of the proof of cheating, we must ensure
certain non-malleability of the view of R, to prevent it from defaming the
honest S. For this, we need to commit R to its particular choices throughout



7.5. Reducing Communication in Cut-and-Choose Protocols 141

the OT extension protocol. At the same time, we must maintain that those
commitments do not leak any information about R’s choices. Next, we sketch
how this can be done, assuming familiarity with the details of the OT extension
of Ishai et al. (2003) (IKNP from Section 3.7.2).

Recall that in the standard IKNP OT extension protocol, R constructs a
random matrix M, and S obtains a matrix M ′ derived from the matrix M,
S’s random string s, and R’s vector of OT inputs r. The matrix M is the
main component of R’s view which, together with S’s signed messages will
constitute a proof of cheating.

To reiterate, we must address two issues. First, because M ′ is obtained
by applying R’s private input r to M, and M ′ is known to S, M is now
sensitive and cannot be revealed. Second, we must prevent R from publishing
a doctored M, which would enable a false cheating accusation. Kolesnikov
and Malozemoff (2015) (KM) resolve both issues by observing that S does in
fact learn some of the elements of M , since in the OT extension construction
some of the columns of M and M ′ are the same (i.e., those corresponding to
zero bits of S’s string s).

The KM signed-OT construction prevents R from cheating by having S
include in its signature carefully selected information from the columns in M
which S sees. Finally, the protocol requires that R generate each row of M
from a seed, and that R’s proof of cheating includes this seed such that the row
rebuilt from the seed is consistent with the columns included in S’s signature.
Kolesnikov and Malozemoff (2015) show that this makes it infeasible for R to
successfully present an invalid row of the OT matrix in the proof of cheating.
The KM construction is in the random oracle model, a slight strengthening of
the assumptions needed for standard OT extension and FreeXOR, two standard
secure computation tools.

The KM construction is also interesting from a theoretical perspective in
that it shows how to construct signed-OT from any maliciously secure OT
protocol, whereas Asharov and Orlandi (2012) build a specific construction
based on the Decisional Diffie-Hellman problem.

7.5 Reducing Communication in Cut-and-Choose Protocols

A basic technique in cut-and-choose used to achieve malicious-level security,
and in the covert and PVC models, is for P1 to send several garbled circuits,



142 Alternative Threat Models

of which several are opened and checked, and one (or more for malicious
security) is evaluated. The opened garbled circuits have no further use, since
they hold no secrets. They only serve as a commitment for purposes of the
challenge protocol. Can commitments to these GCs be sent and verified instead,
achieving the same utility?

Indeed, as formalized by Goyal et al. (2008), this is possible in covert and
malicious cut-and-choose protocols. One must, of course, be careful with the
exact construction. One suitable construction is provided by Goyal et al. (2008).
Kolesnikov and Malozemoff (2015) formalize a specific variant of hashing,
which works with their PVC protocol, thus resulting of the PVC protocol being
of the same communication cost as the semi-honest Yao’s GC protocol.

Free Hash. While GC hashing allows for significant communication savings,
it may not provide much overall savings in total execution time since hashing is
a relatively expensive operation. Motivated by this, Fan et al. (2017) proposed
a way to compute a GC hash simply by xor-ing (slightly malleated) entries of
garbled tables. Their main idea is to greatly weaken the security definition of
the GC hash. Instead of requiring that it is infeasible to find a hash collision,
they allow an adversary to generate a garbled circuit Ĉ′ whose hash collides
with an honestly generated Ĉ, as long as such a Ĉ′ with high probability will
fail evaluation and cheating will be discovered. Fan et al. (2017) then show
how to intertwine hash generation and verification with GC generation and
evaluation, such that the resulting hash is generated at no extra computational
cost and meets the above definition.

7.6 Trading Off Leakage for Efficiency

Maliciously secure MPC provides extremely strong security guarantees, at
a cost. In many cases, the security needs may allow for less than absolute
inability of a malicious attacker to learn even a single bit of information. At
the same time, a large majority of the cost of MPC comes from the “last mile”
of entirely protecting all private information. Given this, useful trade-offs
between MPC security and efficiency have been explored. In this section we
discuss the dual-execution approach of Mohassel and Franklin (2006), as well
as several private database systems.



7.6. Trading Off Leakage for Efficiency 143

Dual Execution. The dual-execution 2PC protocol of Mohassel and Franklin
(2006) capitalizes on the fact that only the circuit generator is able to cheat
in 2PC GC, assuming malicious-secure OT. Indeed, the evaluator simply
performs a sequence of decryptions, and deviation of the prescribed protocol
results in the evaluator being stuck, which is equivalent to abort. The idea
behind dual execution is to allow both players to play a role of the generator
(hence forcing the opponent to play the role of the evaluator where it will
not be able to cheat). As a result, in each honest player’s view, the execution
where it was the generator must be the correct one. However, the honest player
additionally must ensure that the other execution is not detrimental to security,
for example, by leaking private data.

To achieve this, Mohassel and Franklin (2006) propose that the two
executions must produce the same candidate output—a difference in candidate
outputs in the two executions implies cheating, and the computation must be
aborted without output to avoid leaking information from an invalid circuit. In
the protocol, the two parties run two separate instances of Yao’s semi-honest
protocol, so that for one instance P1 is the generator and P2 is the evaluator,
and for the other instance P2 is the generator and P1 is the evaluator. Each party
evaluates the garbled circuit they received to obtain a (still garbled) output.
Then the two parties run a fully maliciously secure equality test protocol to
check whether their outputs are semantically equal (before they are decoded).
Each party inputs both the garbled output they evaluated and the output wire
labels of the garbled circuit they generated. If the outputs don’t match, then the
parties abort. Of course, abort is an exception, and the aborting honest party
will know that that other player cheated in the execution. While this equality
check subprotocol is evaluated using a malicious-secure protocol, its cost is
small since the computed comparison function is fixed and only depends on
the size of the output.

The dual-execution protocol is not fully secure in the malicious model.
Indeed, the honest party executes an adversarially-crafted garbled circuit and
uses the garbled output in the equality-test subprotocol. A malicious party
can generate a garbled circuit that produces the correct output for some of the
other party’s inputs, but an incorrect one for others. Then, the attacker learns
whether the true function output is equal to an arbitrary predicate on honest
party input by observing the abort behavior of the protocol. However, since the



144 Alternative Threat Models

equality test has only one bit of output, it can be shown that the dual-execution
protocol leaks at most one (adversarially-chosen) bit describing the honest
party’s input.

In a follow-up work, Huang et al. (2012b) formalize the dual-execution
definition of Mohassel and Franklin and propose several optimizations in-
cluding showing how the two executions can be interleaved to minimize the
overall latency of dual execution overhead over semi-honest single execution.
In another follow-up work, Kolesnikov et al. (2015) show how the leakage
function of the dual-execution 2PC can be greatly restricted and the probability
of leakage occurring reduced.

Memory Access Leakage: Private DB Querying. Another strategy for
trading-off some leakage for substantial efficiency gains is to incorporate
custom protocols into an MPC protocol that leak some information for large
performance gains. This can be particularly effective (and important) for
applications involving large-scale data analysis. Large-scale data collection
and use has become essential to operation of many fields, such as security,
analysis, optimization, and others. Much of the data collected and analyzed is
private. As a result, a natural question arises regarding the feasibility of MPC
application to today’s data sets.

One particular application of interest is private database querying. The goal
is to enable a database server (DB) to respond to client’s encrypted queries, so
as to protect the sensitive information possibly contained in the query. Private
queries is a special case of MPC, and can be instantiated by using generic
MPC techniques.

One immediate constraint, critical to our discussion is the necessity of
sublinear data access. A fully secure approach would involve scanning the
entire DB for a single query to achieve semi-honest security. This is because
omitting even a single DB entry reveals to the players that this entry was not
in the result set. Sublinear execution immediately implies loss of security of
MPC even in the semi-honest model. However, as covered in Chapter 5, when
linear-time preprocessing is allowed, amortized costs of data access can be
sublinear while achieving full formal cryptographic guarantees.

Known algorithms for fully secure sublinear access, however, are still
very expensive, bringing 3–4 orders of magnitude performance penalties.



7.7. Further Reading 145

A promising research direction looks into allowing certain (hopefully, well-
understood) leakage of information about private inputs in the pursuit of
increased efficiency in protocols for large-scale data search.

Several systems designed to provide encrypted database functionalities
use MPC as an underlying technology (Pappas et al., 2014; Poddar et al.,
2016). In the Blind Seer project (Pappas et al., 2014; Fisch et al., 2015), two-
and three-party MPC was used as an underlying primitive for implementing
encrypted search tree traversal, performed jointly by the client and the server.

Both areas are active research areas, and several commercial systems are
deployed that provide searchable encryption and encrypted databases. We note
that today we don’t have precise understanding of the impact of the leaked
information (or the information contained in the authorized query results sets,
for that matter). Several attacks have shown that data leaked for the sake of
efficiency can often be exploited (Islam et al., 2012; Naveed et al., 2015;
Cash et al., 2015). Understanding how to make appropriate trade-offs between
leakage and efficiency remains an important open problem, but one that many
practical systems must face.

7.7 Further Reading

MPC today is already fast enough to be applied to many practical problems,
yet larger-scale MPC applications are often still impractical, especially in
the fully-malicious model. In this chapter, we discussed several approaches
that aim to strike a balance between security and performance. Reducing the
adversary power (i.e., moving from malicious to covert and PVC models)
enables approximately a factor of 10 cost reduction compared to authenticated
garbling (Section 6.7) and a factor of 40 compared to the best cut-and-choose
methods (Section 6.1). Allowing for additional information to be revealed
promises even more significant performance improvements, up to several
orders of magnitude in some cases (as seen in the private database work in
Section 7.6). Of course, it is important to understand the effect of the additional
leakage. We stress, however, that there is no fundamental difference in the extra
leakage during the protocol execution, and the allowed information obtained
from the output of the computation. Both can be too damaging and both should
be similarly analyzed to understand if (securely) computing the proposed
function is safe.



146 Alternative Threat Models

Another approach that can produce dramatic performance improvements is
employing secure hardware such as Intel SGXor secure smartcards (Ohrimenko
et al., 2016; Gupta et al., 2016; Bahmani et al., 2017; Zheng et al., 2017).
This offers a different kind of a trade-off: should we trust the manufacturer
of the hardware (we must consider both competence and possible prior or
future malicious intent) to greatly improve performance of secure computing?
There is no clear answer here, as hardware security seems to be a cat-and-
mouse game, with significant attacks steadily appearing, and manufacturers
catching up in their revisions cycle. Examples of recent attacks on SGX include
devastating software-only key recovery (Bulck et al., 2018), which does not
make any assumption on victim’s enclave code and does not necessarily require
kernel-level access. Other attacks include exploits of software vulnerabilities,
e.g., (Lee et al., 2017a), or side channels, e.g., (Xu et al., 2015; Lee et al.,
2017b). Ultimately, delivering high-performance in a CPU requires very
complex software and hardware designs, which are therefore likely to include
subtle errors and vulnerabilities. Secure enclaves present an attractive and
high-value attack target, while their vulnerabilities hard to detect in the design
cycle. As such, they may be suitable for computing on lower-value data in larger
instances where MPC is too slow, but not where high assurance is needed.

Theoretical cryptography explored hardware security from a formal per-
spective, with the goal of achieving an ideal leak-free hardware implementation
of cryptographic primitives. The motivation for this work is today’s extensive
capabilities to learn hardware-protected secrets by observing the many side
channels of hardware computation including power consumption, timing,
electromagnetic radiation, and acoustic noise. Leakage-resilient cryptography
was a very popular research direction in late-2000’s, whose intensity since
subsided. Works in this area typically assumed either a small secure component
in hardware (small in chip area and computing only a minimal functionality,
such as a pseudorandom function), or that leakage collected by an adversarial
observer at any one time slice/epoch is a priori bounded. The goal was then to
build provably-secure (i.e., leakage-free) hardware for computing a specific
function based on these assumptions. A foundational paper by Micali and
Reyzin (2004) introduced the notion of physically observable cryptography and
proposed an influential theoretical framework to model side-channel attacks.
In particular, they state and motivate the “only computation leaks information”



7.7. Further Reading 147

axiom used in much of leakage-resilient cryptography work. Juma and Vahlis
(2010) show how to compute any function in a leak-free manner by using
fully-homomorphic encryption and a single “leak-free” hardware token that
samples from a distribution that does not depend on the protected key or the
function that is evaluated on it. A corresponding line of research in the more
practical hardware space acknowledges that real-world leakage functions are
much stronger and more complex than what is often assumed by theoretical
cryptography. In this line of work, heuristic, experimental and mitigation
approaches are typical. Several MPC works have also taken advantage of
(assumed) secure hardware tokens computing basic functions, such as PRF.
Goals here include eliminating assumptions (e.g., Katz (2007) and Goyal et al.
(2010)) or improving performance (Kolesnikov, 2010).


