
8
Conclusion

In the past decade or so, MPC made dramatic strides, developing from
a theoretical curiosity to a versatile tool for building privacy-preserving
applications. For most uses, the key metric is cost, and the cost of deploying
MPC has declined by 3–9 orders of magnitude in the past decade.

The first reported 2PC system, Fairplay (Malkhi et al., 2004), executed a
4383-gate circuit in the semi-honest model, taking over 7 seconds on a local
area network at a rate of about 625 gates per second. Modern 2PC frameworks
can execute about 3 million gates per second on a 1Gbps LAN, and scale to
circuits with hundreds of billions of gates.

Cost improvements for malicious secure MPC have been even more
dramatic. The first substantial attempt to implement malicious secure generic
MPC was Lindell et al. (2008), intriguingly titled “Implementing Two-Party
Computation Efficiently with Security Against Malicious Adversaries”. It
reports malicious evaluation of the 16-bit comparison circuit, consisting of
fifteen 3-to-1 gates and one 2-to-1 gate, in between 135 to 362 seconds
depending on the security parameter settings. This evaluation rate corresponds
to about 0.13 gates per second. An implementation of the authenticated garbling
scheme (Section 6.7) reports malicious security 2PC at over 0.8 million gates
per second on a 10Gbps LAN (Wang et al., 2017b). This corresponds to over a

148



149

6 million factor performance improvement in under a decade! With honest-
majority malicious 3PC the performance that can be achieved is even more
remarkable (Section 7.1.2). Araki et al. (2017) report a 3-machine 20-core
cluster that can evaluate a billion gates per second over a 10Gbps channel.

It is fair to say that the progress in the field of applied MPC is truly
astounding, and things that would have been considered impossible a few years
ago, and now considered routine.

Despite this progress, and many emerging real world uses, MPC is not yet
widespread in practice. There remain several challenges to overcome before
MPC can be deployed for a wide range of privacy-preserving applications. We
discuss a few, and possible approaches for overcoming them next.

Cost. Despite dramatic advances in the 2PC and MPC technology in the past
decade, secure function evaluation still may incur several orders of magnitude
cost penalty over standard (non-private) execution, especially when protecting
against malicious players. The exact overhead varies greatly from virtually
non-existent to unacceptable, and mostly depends on the computed function.

In particular, for generic MPC, the protocols described in this book (which
are, arguably, the ones that are most scalable today in typical settings) all
require bandwidth that scales linearly in the size of the circuit. Bandwidth
within a data center is inexpensive (indeed, many cloud providers do not charge
customers anything for bandwidth between nodes within the same data center),
but it requires a strong trust model to assume all participants in an MPC
would be willing to outsource their computation to the same cloud provider.
In some use cases, this linear bandwidth cost may be prohibitively expensive.
Making bandwidth cost sublinear in circuit size requires a very different
paradigm. Although it has been shown to be possible with threshold-based
FHE schemes (Asharov et al., 2012), such schemes are a long way from being
practical. Recent results have shown that function-sharing schemes can be used
to build lower-bandwidth MPC protocols for certain classes of functions (Boyle
et al., 2016a; Boyle et al., 2018).

The solution to this bandwidth cost seems to require hybrid protocols that
combining MPC with custom protocols or homomorphic encryption to enable
secure computation without linear bandwidth cost. We have covered several
approaches that incorporate these strategies in MPC including private set



150 Conclusion

intersection (Section 3.8.1), RAM-MPC (Chapter 5) and ABY (Section 4.3),
but the limits of this approach are not known. Custom protocols can offer
much lower costs, but developing custom protocols is tedious and only cost-
effective for the most important and performance-critical operations. Future
work may find more principled and automated was to combine generic MPC
with homomorphic encryption and custom protocols to enable very efficient
solutions without compromising security properties.

Another direction for dramatically reducing the cost of MPC is to employ
secure hardware such as Intel’s SGX. This assumes a somewhat awkward (but
often realistic in practice) threat model where a vendor is trusted to implement
a secure enclave and manage its keys, but not trusted fully to be an trusted
third party. Signal recently released a private contact discovery service using
SGX (Marlinspike, 2017), and many researchers are pursuing MPC designs
that take advantage of SGX (Bahmani et al., 2017; Shaon et al., 2017; Priebe
et al., 2018; Mishra et al., 2018).

Leakage trade-offs. Clearly, the MPC performance race will continue,
although specific improvement areas may shift. For example, we have already
achieved several MPC milestones, such as being able to fully utilize a very
capable 10Gbps communication channel. Further, there exist several barriers
for algorithmic performance improvement, such as the need for two ciphertexts
for AND gate encryption, shown by Zahur et al. (2015). This may limit expected
performance gains in basic generic Yao-based MPC.

Indicative of the recognition of these barriers and the data processing de-
mands, a line of work emerged addressing the trade-off betweenMPC efficiency
and achieved security guarantees, which we partially covered in Chapter 7.
Another possible direction for leakage trade-offs is within the core protocols,
where large efficiency gains may be achieved by giving up the strong secu-
rity guarantees targeted by current protocols for more flexible information
disclosure limits.

In terms of which MPC operation is in most need of improvement,
achieving secure access to random memory locations stands out. Despite
all the improvements described in Chapter 5, today’s ORAM protocols are
still concretely inefficient and are the main limit in scaling MPC to large
data applications. An alternative to ORAM, in the absence of a satisfactory



151

fully secure solution, could be security-aware leakage of data access patterns,
accompanied by a formal analysis of how this information satisfies security
and privacy requirements. It is plausible that in many scenarios it can be
formally shown, e.g., using tools from programming languages among others,
that revealing some information about the access pattern is acceptable.

Output leakage. The goal of MPC is to protect the privacy of inputs and
intermediate results, but at the end of the protocol the output of the function is
revealed. A separate research field has developed around the complementary
problem where there is no need to protect the input data, but the output must
be controlled to limit what an adversary can infer about the private data from
the output. The dominant model for controlling output leakage is differential
privacy (Dwork and Roth, 2014) which adds privacy-preserving noise to
outputs before they are revealed. A few works have explored combining MPC
with differential privacy to provide end-to-end privacy for computations with
distributed data (Pettai and Laud, 2015; Kairouz et al., 2015; He et al., 2017),
but this area is in its infancy and many challenging problems need to be solved
before the impacts of different types of leakage are well understood.

Meaningful trust. When cryptographers analyze protocols, they assume
each party has a way to executed their part of the protocol that they fully
trust. In reality, protocols are executed by complex software and hardware,
incorporating thousands of components provided by different vendors and
programmers. The malicious secure protocols we discussed in this book
provide a user with strong guarantees that if their own system executes its role
in the protocol correctly, no matter what the other participants do the security
guarantees are established. But, in order to fully trust an MPC application,
a user also needs to fully trust that the system executing the protocol on its
behalf, which is given full access to their private data in cleartext, will execute
the protocol correctly. This includes issues like ensuring the implementation
has no side channels that might leak the user’s data, as well as knowing that it
performs all protocol steps correctly and does not attempt to leak the user’s
private input.

Providing full confidence in a computing system is a longstanding and
challenging problem that applies to all secure uses of computing, but is



152 Conclusion

particularly sharp in considering the security of MPC protocols. In many
deployments, all participants end up running the same software, provided by a
single trusted party, and without any auditing. In practice, this provides better
security that just giving all the data to the software provider; but in theory, it is
little different from just handing over all the plaintext data to the software (or
hardware) provider.

One appealing aspect of MPC techniques is they can be used to alleviate
the need to place any trust in a computing system—if private data is split into
shares and computed on using two systems using MPC, the user no longer
needs to worry about implementation bugs in either systems exposing the
data since the MPC protocol ensures that, regardless of the type of bug in the
system even including hardware side channels, there is no risk of data exposure
since the private data is always protected by cryptography withing the MPC
protocol and is not visible to the system at all.

Finding ways to meaningfully convey to end users how their data will be
exposed, andwhat they are trusting in providing it, is amajor challenge for future
computing systems. Making progress on this is essential for enabling privacy-
enhancing technologies like MPC to provide meaningful and understandable
benefits to the vast majority of computing users, rather than just to sophisticated
organizations with teams of cryptographers and program analysts.

We wish to conclude this book on an optimistic note. The awareness
that personal data can be compromised in a data breach, or can be abused
by companies whose interests do not align with those of their users, is
increasing. New regulations, including the European Union’s General Data
Protection Regulation, are making holding personal data a liability risk for
companies. MPC has emerged as a powerful and versatile primitive that can
provide organizations and individuals with a range of options for designing
privacy-preserving applications.Many challenges remain, butMPC (and secure
computation broadly) is a young and vibrant field, with much opportunity to
create, develop and apply.


