CMP_SC 8001 - Introduction to Secure Multiparty Computation

Wei Jiang

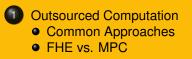
Department of Electrical Engineering and Computer Science University of Missouri

Wei Jiang - http://faculty.missouri.edu/wjiang/

Outline

Common Approache FHE vs. MPC

Outline



- 2 Multi-Party Computation
 - The Goal of MPC
 - History of MPC
 - Generic and Specialized MPC
- Selected MPC Applications
 Auction, Voting and Machine Learning
 MPC Deployments

Common Approaches FHE vs. MPC

Types of Secure and Verifiable Computation

- There are two main types of secure and verifiable computation:
 - outsourced computation
 - 2 multi-party computation
- We focus on multi-party computation
- First we briefly describe outsourced computation to distinguish it from multi-party computation

Common Approaches FHE vs. MPC

Outsourced Computation

- One party owns the data and wants to be able to obtain the result of computation on that data
- Another party receives and stores the **encrypted** data:
 - performs computation on the encrypted data, and
 - provides the encrypted results to the data owner

without learning anything about the **input data**, **intermediate** values, or **final result**

• The data owner can then decrypt the returned results to obtain the output

Common Approaches FHE vs. MPC

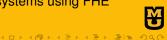
Common Approaches - Homomorphic Encryption

- Homomorphic encryption allows operations on encrypted data
- Partially-homomorphic encryption (PHE) schemes allow certain operations (e.g., addition or multiplication) be performed
- Examples of efficient PHE schemes
 - Paillier, 1999
 - Naccache and Stern, 1998
 - Boneh et al., 2005
- Systems built on them are limited to specialized problems that can be framed in terms of the supported operations

Common Approaches FHE vs. MPC

Common Approaches - Fully Homomorphic Encryption

- Fully homomorphic encryption (FHE) supports both addition and multiplication; thus, any function can be computed
 - FHE was first envisioned by Rivest et al. in 1978
 - The first FHE scheme was proposed by Gentry in 2009, building on lattice-based cryptography
- There has been much recent interest in implementing FHE schemes, such as
 - Gentry and Halevi (2011)
 - Halevi and Shoup (2015)
 - Chillotti et al. (2016)
- Building secure, deployable and scalable systems using FHE remains an open problem



Common Approaches FHE vs. MPC

FHE and MPC Comparison

- In their basic forms, FHE and MPC address different aspects of secure computation, but do provide similar functionalities
- There are ways to adapt FHE to use multiple keys that enables multi-party computation
 - Asharov et al., 2012
 - López- Alt et al., 2012
 - Mukherjee and Wichs, 2016
- FHE offers an asymptotic communication improvement comparing to MPC, but is computational more expensive
 - State-of-the-art FHE (Chillotti et al., 2017) are thousands of times slower than two-party and multi-party secure computation in typical applications

Common Approaches FHE vs. MPC

FHE and MPC Comparison

- The performance of FHE and MPC depends on the relative costs of computation and bandwidth
- For high-bandwidth settings, such as where devices connected within a data center, MPC vastly outperforms FHE
- As FHE techniques improve, and the relative cost of bandwidth over computation increases, FHE-based techniques may eventually become competitive with MPC

The Goal of MPC History of MPC Generic and Specialized MPC

Outline

Wei Jiang - http://faculty.missouri.edu/wjiang/

The Goal of MPC History of MPC Generic and Specialized MPC

The Goal of Multi-Party Computation

- Secure multi-party computation (MPC) enables a group of independent data owners who do not trust each other or any common third party to jointly compute a function that depends on all of their private inputs
- MPC differs from outsourced computation in that all of the protocol participants are data owners who participate in executing a protocol

The Goal of MPC History of MPC Generic and Specialized MPC

History of MPC

- The idea of secure computation was introduced by Andrew Yao in the early 1980s (Yao, 1982)
- The paper introduced a general notion of secure computation
 - *m* parties want to jointly compute a function f(x₁, x₂,..., x_m) where x_i is the ith party's private input
- In a series of talks over the next few years (but not included in any formal publication), Yao introduced Garbled Circuits
 - the basis for many MPC implementations

CMP_SC 8001

The Goal of MPC History of MPC Generic and Specialized MPC

History of MPC

- Secure computation was primarily of only theoretical interest for the next twenty years
- In the early 2000s, algorithmic improvements and computing costs make it more realistic to build practical systems
- Fairplay (Malkhi et al., 2004) was the first notable implementation of a general-purpose MPC
 - A privacy-preserving program could be expressed in a high level language, and
 - compiled to executables that could be run by the data-owning participants as a multi-party protocol

The Goal of MPC History of MPC Generic and Specialized MPC

History of MPC

- Fairplay is scalable and limited to toy programs
- Since then, the speed of MPC protocols has improved by more than five orders of magnitude
 - due to a combination of cryptographic, protocol, network and hardware improvements

CMP SC 8001

 This enabled MPC applications to scale to a wide range of interesting and important applications

The Goal of MPC History of MPC Generic and Specialized MPC

Generic and Specialized MPC

- Yao's garbled circuits protocol is a generic protocol:
 - Compute any discrete function that can be represented as a fixed-size circuit
- For specific functionalities, there may be custom protocols that are much more efficient than the best generic protocols

Auction, Voting and Machine Learning MPC Deployments

Outline

- Multi-Party Computation
 The Goal of MPC
 - History of MPC
 - Generic and Specialized MPC

Selected MPC Applications

- Auction, Voting and Machine Learning
- MPC Deployments

Auction, Voting and Machine Learning MPC Deployments

Yao's Millionaires Problem

- It was used to introduce secure computation and not meant to be a useful application
- Yao (1982) introduces it simply:
 - "Two millionaires wish to know who is richer; however, they do not want to find out inadvertently any additional information about each other's wealth."
- More formally, the goal is to compute the Boolean result of $x_1 \le x_2$
 - where x₁ is the first party's private input and x₂ is the second party's private input
- Although it is a toy problem, it is be useful for illustrating issues in MPC applications

Auction, Voting and Machine Learning MPC Deployments

Secure Auctions

- The need for privacy in auctions is well understood: both bidders and sellers need to be able to rely on the privacy and non-malleability of bids
- Bid privacy requires that no player may learn any other player's bid (other than perhaps revealing the winning bid upon the completion of the auction)
- Bid non-malleability means that a player's bid may not be manipulated to generate a related bid
 - If a party generates a bid of n, then another party should not be able to use this bid to produce a bid of n + 1
 - Note that bid privacy does not necessarily imply bid non-malleability

Auction, Voting and Machine Learning MPC Deployments

Sealed Bib Auction

- Bidders submit private (sealed) bids in attempts to purchase property, selling to the highest bidder
- The first bidder's bid value must be kept secret from other bidders to prevent those from having an unfair advantage
- Bid malleability may allow a dishonest bidder Bob to present a bid just slightly over Alice's bid
- The auction itself must be conducted correctly, awarding the item to the highest bidder for the amount of their bid

Auction, Voting and Machine Learning MPC Deployments

Vickrey Auction

- A type of sealed-bid auction:
 - The highest bidder wins but the price paid is the value of the second-highest bid
 - This gives bidders an incentive to bid their true value
- It also requires privacy and non-malleability of each bid, and correctness in determining the winner and price

Auction, Voting and Machine Learning MPC Deployments

MPC for Secure Auctions

- MPC can be used to easily achieve all these features by
 - embedding the desired properties into the function used to jointly execute the auction
- All the participants can verify the function
- Then rely on the MPC protocol to provide high confidence that the auction will be conducted confidentially and fairly

Auction, Voting and Machine Learning MPC Deployments

- Secure electronic voting is simply computation of the addition function which tallies the vote
- Privacy and non-malleability of the vote (properties discussed above in the context of auctions) are essential for similar technical reasons
- Additionally, because voting is a fundamental civil process, these properties are often asserted by legislation

Auction, Voting and Machine Learning MPC Deployments

Voting

- Voting is an example of an application which may require properties not covered by the standard MPC security definitions
- In particular, the property of coercion resistance is not standard in MPC (but can be formally expressed and achieved (Küsters et al., 2012))
- The issue here is the ability of voters to prove to a third party how they voted
- If such a proof is possible, then voter coercion is also possible

Auction, Voting and Machine Learning MPC Deployments

Secure Machine Learning

- MPC can be used to enable privacy in both the **inference** and **training** phases of machine learning systems
- Oblivious model inference allows a client *C* to submit a request to a server *S* holding a pre-trained model
 - keeping the request private from *S* and the model private from *C*
- In this setting, the inputs to the MPC are the private model from S, and the private test input from C, and the output is the model's prediction only known to C
- MiniONN (Liu et al., 2017) allows any standard neural network to be converted to an oblivious model service using a combination of MPC and homomorphic encryption techniques

Auction, Voting and Machine Learning MPC Deployments

Secure Machine Learning

- In the training phase, MPC can be used to enable a group of parties to train a model based on their combined data without exposing that data
- For large scale data sets, it is not feasible to perform training across private data sets as a generic many-party computation
- To improve training efficiency and scalability
 - hybrid approaches that combine MPC with homomorphic encryption (Nikolaenko et al., 2013b; Gascón et al., 2017)
 - custom protocols to perform secure arithmetic operations efficiently (Mohassel and Zhang, 2017)

Auction, Voting and Machine Learning MPC Deployments

Other Applications

Many other interesting applications have been proposed for using MPC to enable privacy, such as

- Network security monitoring (Burkhart et al., 2010) and genomics (Wang et al., 2015a; Jagadeesh et al., 2017)
- Stable matching (Doerner et al., 2016), contact discovery (Li et al., 2013; De Cristofaro et al., 2013), ad conversion (Kreuter, 2017), and spam filtering on encrypted email (Gupta et al., 2017)

Auction, Voting and Machine Learning MPC Deployments

Deployment Challenges

- We are still in the early stages of deploying MPC solutions to real problems
- Challenging problems beyond MPC execution itself
 - Building confidence in the system executing the protocol
 - Understanding what sensitive information might be inferred from the revealed output of MPC
 - Enabling decision makers without technical cryptography background to understand the benefits and risks of MPC

Auction, Voting and Machine Learning MPC Deployments

Deployment Challenges

- Despite these challenges, there have been several successful deployments of MPC
- Companies now focus on providing MPC-based solutions
- In this early stage, organizations are typically not seeking to use MPC as an added layer of privacy
- MPC is mainly deployed to enable a feature or an entire application which would not be possible without trusting specialized hardware
 - due to the value of the shared data, protective privacy legislation, or mistrust of the participants

Auction, Voting and Machine Learning MPC Deployments

Danish Sugar Beets Auction

- It is considered to be the first commercial application of MPC
- Danish researchers collaborated with the Danish government and stakeholders to create an auction and bidding platform for sugar beet production contracts
- As reported in Bogetoft et al. (2009), bid privacy and auction security were seen as essential for auction participants
 - The farmers felt that their bids reflected their capabilities and costs, which they did not want to reveal to Danisco
 - Also, Danisco needed to be involved in the auction as the contracts were securities directly affecting the company

Auction, Voting and Machine Learning MPC Deployments

Danish Sugar Beets Auction

- The auction was implemented as a three-party MPC among representatives for Danisco, the farmer's association (DKS) and the researchers (SIMAP project)
- Bogetoft et al. (2009) explained a three party solution was selected because
 - it was natural in the given scenario, and
 - allowed using efficient information theoretic tools such as secret sharing
- This led to the formation of Partisia, a company supporting secure auctions and related applications for industries such as spectrum and energy markets (Gallagher et al., 2017)

Auction, Voting and Machine Learning MPC Deployments

Estonian Students Study

- Estonia was alarmed about graduation rates of IT students
 - In 2012, nearly 43% of IT students enrolled in the previous five years had failed to graduate
- One potential explanation considered was that
 - the IT industry was hiring too aggressively, luring students away from completing their studies

Auction, Voting and Machine Learning MPC Deployments

Estonian Students Study

- The Estonian Association of Information and Communication Technology wanted to investigate by mining education and tax records to see if there was a correlation
- However, privacy legislation prevented data sharing across the Ministry of Education and the Tax Board
 - *k*-anonymity-based sharing was allowed, but it would have resulted in low-quality analysis
 - since many students would not have had sufficiently large groups of peers with similar qualities

Auction, Voting and Machine Learning MPC Deployments

Estonian Students Study

- MPC provided a solution, facilitated by Cybernetica using their Sharemind framework (Bogdanov et al., 2008a)
- The data analysis was done as a three-party computation, with servers representing the Estonian Information System's Authority, the Ministry of Finance, and Cybernetica
- The study, reported in Cybernetica (2015) and Bogdanov (2015), found that
 - there was no correlation between working during studies and failure to graduate on time
 - but that more education was correlated with higher income

Auction, Voting and Machine Learning MPC Deployments

Boston Wage Equity Study

- An initiative of the City of Boston and the Boston Women's Workforce Council (BWWC)
 - to identify salary inequities across various employee gender and ethnic demographics at different levels of employment
 - widely supported by the Boston area organizations, but privacy concerns prevented direct sharing of salary data
- In response, Boston University researchers designed and implemented a web-based MPC aggregation tool
 - which allowed employers to submit the salary data privately with full technical and legal protection

Auction, Voting and Machine Learning MPC Deployments

Boston Wage Equity Study

- As reported by Bestavros et al. (2017), MPC enabled the BWWC to conduct their analysis and produce a report presenting their findings
- The effort included meetings with stakeholders to convey
 - the risks and benefits of participating in the MPC
 - the importance of addressing usability and trust concerns
- One indirect result of this work is inclusion of secure multi-party computation as a requirement in a bill for student data analysis introduced in the United States Senate (Wyden, 2017)

Auction, Voting and Machine Learning MPC Deployments

Key Management

- One of the biggest problems faced by organizations today is safeguarding sensitive data as it is being used
- This is best illustrated using the example of authentication keys
- This use case lies at the core of the product offering of Unbound Tech (Unbound Tech, 2018)
- Unlike other uses of MPC where the goal is to protect data owned by multiple parties from exposure, here the goal is to protect from compromise the data owned by a single entity

Auction, Voting and Machine Learning MPC Deployments

Key Management

- To enable a secure login facility, an organization must maintain private keys
- Suppose shared-key authentication, where each user has shared a randomly chosen secret key with the organization
- Each time the user U authenticates, the organization's server S looks up the database of keys and retrieves U's public key sku
- The key is then used to authenticate and admit *U* to the network by running key exchange

Auction, Voting and Machine Learning MPC Deployments

Key Management

- The security community has long accepted that
 - it is nearly impossible to operate a fully secure complex system, and
 - an adversary will be able to penetrate and stealthily take control over some of the network nodes
- The advanced adversary, sometimes called Advanced Persistent Threat (APT), aims to quietly undermine the organization
- Naturally, the most prized target for APT and other types of attackers is the key server

< ロ > < 同 > < E > < E > E = のQC

Auction, Voting and Machine Learning MPC Deployments

Hardening the Key using MPC

- Splitting the key server's functionality into two (or more) hosts, S₁ and S₂, and secret-sharing key material between the two
- Now, an attacker must compromise both S₁ and S₂ to gain access to the keys
 - run S₁ and S₂ on two different software stacks to minimize the chance that they will be both vulnerable to malware, and
 - operate them using two different sub-organizations to minimize insider threats

Auction, Voting and Machine Learning MPC Deployments

Hardening the Key using MPC

- Routine execution does need access to the keys to provide authentication service
- At the same time, key should never be reconstructed as the reconstructing party will be the target of the APT attack
- Instead, the three players, *S*₁, *S*₂, and the authenticating user *U*, will run the authentication inside MPC
 - without ever reconstructing any secrets, and thus
 - removing the vulnerability and hardening the defense

CMP SC 8001

Appendix

Acknowledgment

The contents of these slides are based on the following book:

- A Pragmatic Introduction to Secure Multi-Party Computation https://securecomputation.org/
- Chapter 1: Introduction