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What is Zero-Knowledge (ZK) Proof

Completeness: if the statement is true, a prover can convince
an honest verifier that the statement is true

Soundness: if the statement is false, a prover can convince an
honest verifier to accept this fact with negligible probability

Zero-knowledge: if the statement is true, no verifier can learn
anything, except the fact that the statement is true

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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How to Show a Proof is ZK

Similar to the read-ideal paradigm

There exists a simulator for any verifier,

given only the statement to be proved
it can produce view indistinguishable from an interaction
between the honest prover and the verifier

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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3-Colorable Graph

Definition

A graph G = 〈V ,E〉 is 3-colorable if V can be colored with three
different colors, such that for any two vertices vi and vj connected via
an edge eij , Color(vi ) 6= Color(vj )

Key Facts

If G 3-colorable, permuting its three colors results another
valid 3-coloring

If G not 3-colorable, there exists at least a pair of adjacent
vertices having the same color

Graph 3-coloring is a NP-Complete problem

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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ZK-Proof for Graph 3-Coloring

Public input:

G = 〈V ,E〉
H: a secure commitment function

Private input:

Prover: w , a 3-coloring of G
Verifier: ⊥

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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ZK-Proof for Graph 3-Coloring

1 Prover:

randomly permute the 3 colors of w to produce w ′

send H(w ′) to the verifier, where
H(w ′) = {H(vi ,Color(vi ))|∀i , vi ∈ V}

2 Verifier:

randomly select eij ∈ E (or (i , j) ∈ E)
send eij or (i , j) to the prover

3 Prover: send 〈vi ,Color(vi )〉 and 〈vj ,Color(vj )〉 to the verifier

4 Verifier: if the commitments can be verified and
Color(vi ) 6= Color(vj ), return accept; otherwise, return reject

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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ZK-Proof for Graph 3-Coloring

Completeness: if w is a valid 3-coloring of G, an honest verifier
will always return accept

Soundness:

if w is not a valid 3-coloring, the probability that an honest
verifier returns accept is bounded by |E|−1

|E| or 1− 1
|E|

the above probability is also called soundness error

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Making the Soundness Error Negligible

The previous proof is not very sound:

the accept probability or the soundness error 1− 1
|E| is too

high when w is not a valid 3-coloring
how to make the soundness error negligible?

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Making the Soundness Error Negligible

Run the above proof n|E | times independently

The verifier returns accept if all n|E | executions returns accept

Soundness error: (
1− 1
|E |

)n|E|

≤ 1
en

using the following inequality: (1 + x)t ≤ etx for any real number
x and t with t > 0

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Zero Knowledge

To prove the previous proof is zero-knowledge, we need to build
a simulator S

Based on the public information, S generates a simulated view
of the interaction between a prover (P) and a verifier (V )

If the simulated view is computationally indistinguishable from
the real interaction or execution of the proof, the proof is
zero-knowledge when V is computationally bounded

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Zero Knowledge - the Simulator

Simulator for graph 3-coloring

1 S randomly chooses an edge eij ∈ E and colors vi and vj with
different colors, and colors the rest the same color to produce ŵ .
Then S commits ŵ , denoted by H(ŵ)

2 S simulates V using H(ŵ), and receives (i ′, j ′), the first
message V sends

If (i , j) = (i ′, j ′), then S can honestly answer the query and
simulate the rest of the protocol, and outputs the transcript:

ViewS = {H(ŵ), 〈vi ,Color(vi )〉, 〈vj ,Color(vj )〉,accept}

If (i , j) 6= (i ′, j ′), then S restarts from the beginning with a
newly chosen (i , j)

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Zero Knowledge - the Simulator

Note that Prob((i , j) = (i ′, j ′)) ≈ 1
|E| , since the selection of (i ′, j ′)

is only based on the commitments, which cannot bias the
decision due to the hiding property

Thus, S succeeds with probability about 1/|E |, and the expected
number of iterations to terminate is |E |

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Zero Knowledge - Real vs Ideal (Simulator)

Viewπ = {H(w ′), 〈vi ,Color(vi )〉, 〈vj ,Color(vj )〉,accept}

ViewS = {H(ŵ), 〈vi ,Color(vi )
∗〉, 〈vj ,Color(vj )

∗〉,accept}

Viewπ and ViewS are computationally indistinguishable:

H(w ′) and H(ŵ) are computationally indistinguishable due
to the hiding property of H
〈Color(vi ),Color(vj )〉, and 〈Color(vi )

∗,Color(vj )
∗〉 are

identically distributed since the colors are randomly
permuted for each execution of the proof

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Hamiltonian Cycle

Given a graph G = 〈V ,E〉, a Hamiltonian cycle includes every
vertex vi ∈ V exactly once

The problem of finding a Hamiltonian cycle in G is known to be
NP-Complete

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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ZK-Proof for Hamiltonian Cycle

Public information: G is known to both Alice and Bob

Private inputs:

Alice: C ⊆ E a Hamiltonian cycle in G
Bob: ⊥

ZK-proof: Alice proves to Bob that she knows C without
disclosing any information about it to Bob

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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ZK-Proof for Hamiltonian Cycle

1 Alice chooses a random permutation (on the vertices of G):
π(G)→ G′, and sends H(G′) and H(π), the commitments of G
and π, to Bob

2 Bob randomly chooses b ∈ {0,1}, and sends it to Alice

3 Alice performs the following, based on the challenge b:

b = 0: open G′ and π
b = 1: compute C′ ← π(C) and open only the
commitments related to C′

4 Bob returns accept if either verification below succeeds:

b = 0: verify the commitments and check if G′ = π(G)
b = 1: verify the commitments related to C′ and check if C′

is a Hamiltonian cycle

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Completeness

If Alice does know a Hamiltonian cycle in G, she can easily
satisfy Bob’s either challenge:

the graph isomorphic mapping π producing G′ from G, or
a Hamiltonian cycle C′ in G′ produced based on π

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Soundness

If Alice does not know C, she can guess which question Bob will
ask to generate either

a graph isomorphic to G, or
a Hamiltonian cycle for an unrelated graph

However, since she does not know a Hamiltonian cycle for G,
she cannot do both

Soundness error: 1
2

Similar to graph 3-coloring, the soundness error can be reduced
to 1

2n by executing the proof n times

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Soundness

Conversely, if Alice has prior knowledge about the challenge bit
b, she can fool Bob without knowing a valid C

If Alice knew b = 0, she would commit to an arbitrary
permutation π(G) and still pass the challenge

If Alice knew b = 1, she would commit to a complete graph with
|G| vertices not a permutation of G, and she would then reveal
any arbitrary Hamiltonian cycle on the complete graph to Bob

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Zero Knowledge

Alice’s answers do not reveal the original Hamiltonian cycle C

Each round, Bob only learns G′ is isomorphic to G or a
Hamiltonian cycle in G′

He would need both answers for a single G′ to discover the
cycle C in G

Thus, C remains unknown as long as Alice can generate a
distinct G′ every round

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Zero Knowledge

Prove there exists a probabilistic-polynomial time (PPT)
simulator S for every PPT malicious verifier V ∗ such that

the output distribution of the interaction between S and
each V ∗ is computationally indistinguishable from that of
the interaction between each V ∗ and an honest prover P

S predicts the challenge bit b′ and commits either to a valid
graph permutation or the complete graph with |G| vertices with a
trivial Hamiltonian cycle

If the predicted challenge bit matches the actual challenge bit
b′ = b, then S proceeds by successfully responding to the
challenge; otherwise, S rewinds the transcript and tries again

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Simulator Complexity

The probability of guessing b′ correctly is 1
2

Thus, the expected number of iterations is 2

In other words, the simulator runs in expected polynomial time

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Division Theorem

Theorem (Division Algorithm)

If a and b are integers such that b > 0, then there are unique integers
q and r such that a = bq + r , where 0 ≤ r < b

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Linear Combination

Definition (Linear Combination)

If a and b are integers, then a linear combination of a and b is a sum
of the form ax + by , where both x and y are integers

Example

What are the linear combinations of 9x + 15y?

−3 = 9 · (−2) + 15 · 1

0 = 9 · 0 + 15 · 0

3 = 9 · 2 + 15 · (−1)

It can be shown that the set of all linear combinations of 9 and
15 is {. . . ,−12,−9,−6,−3,0,3,6,9,12, . . .}

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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The Greatest Common Divisor

Definition (Greatest Common Divisor)

The greatest common divisor (gcd) of two integers a and b, not both
zero, is the largest of the common divisors of a and b

Theorem (GCD as a Linear Combination)

The greatest common divisor of the integers a and b, not both 0, is
the least positive integer that is a linear combination of a and b

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Some Facts related to GCD and Divisibility

Fact 1: d |a and d |b =⇒ d |(am + bn)

Fact 2: d |a and d |b =⇒ d | gcd(a,b)

Fact 3: gcd(0,0) = 0 and gcd(a,0) = |a|

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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The Euclidean Algorithm

Theorem
For any non-negative integer a and any positive integer b,
gcd(a,b) = gcd(b,a mod b)

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Algorithm 1 Euclid(a,b)
Require: a and b are non-negative integers

1: if b = 0 then
2: return a
3: else
4: return Euclid(b,a mod b)
5: end if

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Find the gcd of 30 and 72

First we use the division theorem to write:

72 = 2 · 30 + 12

The Euclidean theorem tells us that

gcd(72,30) = gcd(30,72 mod 30) = gcd(30,12)

30 = 2 · 12 + 6
gcd(30,12) = gcd(12,30 mod 12) = gcd(12,6)

12 = 2 · 6 + 0
gcd(12,6) = gcd(6,12 mod 6) = gcd(6,0) = 6

gcd(72,30) = 6

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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The Extended Euclidean

Find the GCD of 801 and 154

801 = 5 · 154 + 31 (1)
154 = 4 · 31 + 30 (2)

31 = 1 · 30 + 1 (3)
30 = 30 · 1 + 0 (4)

1 = 1 · 1 + 0 (5)

gcd(801,154) = gcd(1,0) = 1

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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The Extended Euclidean

Find the linear combination of gcd(801, 154) = 801 · x + 154 · y

Starting with the GCD based Equation (5):

1 = 1 · 1 + 0 · 0 (g = 1, x = 1, y = 0)

Replace 0 in the above according to Equation (4):

1 = 30 · 0 + 1 · 1 (g = 1, x = 0, y = 1)

Replace 1 in the above according to Equation (3):

1 = 31 · 1 + 30 · (−1) (g = 1, x = 1, y = −1)

Replace 30 in the above according to Equation (2):

1 = 154 · (−1) + 31 · 5 (g = 1, x = −1, y = 5)

Replace 31 in the above according to Equation (1):

1 = 801 · 5 + 154 · (−26) (g = 1, x = 5, y = −26)

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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The Extended Euclidean

The algorithm terminates with b = 0 and a = g; thus, from these
parameters, the linear combination for g is g = g · 1 + 0 · 0

Starting from these coefficients (x , y) = (1,0), we can go
backwards up the recursive calls

We need to figure out how the coefficients x and y change
during the transition from (a,b) to (b,a mod b)

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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The Extended Euclidean

Assuming we found the coefficients (x ′, y ′) for (b,a mod b)

g = b · x ′ + (a mod b) · y ′

We want to find the pair (x , y) for (a,b):

g = a · x + b · y

We can represent a mod b as:

a mod b = a−
⌊ a

b

⌋
· b

Replacing this in the coefficient equation for (x ′, y ′) gives:

g = b · x ′ + (a mod b) · y ′ = b · x ′ +
(
a−

⌊ a
b

⌋
· b
)
· y ′

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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The Extended Euclidean

After rearranging and combining the terms, we have:

g = a · y ′ + b ·
(
x ′ − y ′ ·

⌊ a
b

⌋)
As a result, the values of x and y are:

x = y ′

y = x ′ − y ′ ·
⌊ a

b

⌋

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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The Extended Euclidean

Algorithm 2 Extended_Euclid(a,b)
Require: a and b are non-negative integers

1: if b = 0 then
2: return (a,1,0)
3: else
4: (g′, x ′, y ′) = Extended_Euclid(b,a mod b)
5: (g, x , y) = (g′, y ′, x ′ − ba/bcy ′)
6: return (g, x , y)
7: end if

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Group Definition

A set of objects G along with a binary operation (•) is called a group if
the following four properties hold:

Closure: If a,b ∈ G, then c = a • b ∈ G

Associativity: (a • b) • c = a • (b • c)

Identity element: There exists a unique element e in G, such
that for every a ∈ G, we have a • e = e • a = a

Inverse: For every a ∈ G, there exists b ∈ G such that a • b = e

A group is commutative or abelian if for any two elements a,b ∈ G,
we have a • b = b • a

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Group Examples

Integers Z is a group under addition (+), and real numbers R
with either addition (+) or multiplication (×) operation is a group

Zn = {0,1, . . . ,n − 1} with addition modulo n (+,modn) is a
group where n is a positive integer:

a,b ∈ Zn, then c = a + b mod n is also in Zn
The identity element is 0, and the inverse of a is n − a
7,15 ∈ Z16, then 7 + 15 mod 16 = 6

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Group Examples

Z+
p = {1, . . . ,p − 1} with multiplication modulo p (×,modp) is a

group where p is a prime:

a,b ∈ Z+
p , then c = a× b mod p is also in Z+

p
The identity element is 1

Given a ∈ Z+
p , find the inverse of a (denoted by a−1):

gcd(a,p) = a · x + p · y
a−1 = x mod p

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Ring and Field

Definition (Ring)

A ring is a set of elements with two binary operations, addition (+)
and multiplication (×):

It is an abelian group with identify element 0 under addition

Its multiplication is associative a× (b × c) = (a× b)× c and
distributive over addition a× (b + c) = a× b + a× c and
(b + c)× a = b × a + c × a

A ring is commutative if a× b = b × a for every a and b

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Ring and Field

Definition (Field)

A ring is called a field if its elements, except for 0, form a
commutative group under ×

Zp = {0,1, . . . ,p − 1} with (+,modp ) and (×,modp) is a field
where p is a prime:

The identity element is 0 under (+,modp )
The identity element is 1 under (×,modp )

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Common Notations

Zn = {0,1, . . . ,n − 1}

Pi : a participating party indexed by i ∈ {1, . . . ,m}

[v ] =
{

[v ]1, . . . , [v ]m
}

: a value v ∈ Zn is secretly shared among
the parties where [v ]i (1 ≤ i ≤ m) is the share held by Pi

[v ]t =
{

[v ]1t , . . . , [v ]mt
}

: a value v is secretly shared using a
t-degree polynomial over a finite field among the parties

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Secret Sharing in Zn

Suppose there are two parties P1 and P2, and each has a
private value α and β in Zn respectively

To secretly share α ∈ Zn between P1 and P2, P1 performs the
following steps:

randomly select r from Zn
set [α]1 = r and [α]2 = α− r mod n
send [α]2 to P2

β can be secretly shared similarly by P2

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Secure Addition [α + β]

To derive [α + β], each party adds its local shares; that is,

P1: [α + β]1 ← [α]1 + [β]1 mod n
P2: [α + β]2 ← [α]2 + [β]2 mod n

We will omit the modn operation where the context is clear

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Secure Multiplication between [α] and a Constant c to
Result [c · α]

c ∈ Zn (or in Zp) is known to both parties

To derive [c ·α], each party multiplies its local shares of α with c:

P1: [c · α]1 ← c · [α]1

P2: [c · α]2 ← c · [α]2

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Secure Multiplication [αβ]

Suppose χ = α + u and γ = β + v , and we have

χγ = αβ + vα + uβ + uv

It is easy to see that

αβ = χγ − χv − γu + uv

We perform multiplication of αβ based on χ, γ, u and v

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001
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Secure Multiplication [αβ]

To compute [αβ], we follow the relation below:

[αβ]1 = χγ − χ[v ]1 − γ[u]1 + [uv ]1

[αβ]2 = −χ[v ]2 − γ[u]2 + [uv ]2

This implies that if both P1 and P2 know χ, γ, [u], [v ] and [uv ],
then they can derive [αβ]

〈[u], [v ], [uv ]〉 is called a Beaver triple
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Secure Multiplication [αβ]

To compute [αβ], we need an additional party P3

The purpose of using P3 is to generate the Beaver triple
〈[u], [v ], [uv ]〉 shared between P1 and P2

From [u] and [v ], P1 and P2 can collaboratively derive χ and γ

Then [αβ] can be easily derived by both parties as shown earlier
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Secure Multiplication [αβ]

Input: 〈P1, [α]1, [β]1〉, 〈P2, [α]2, [β]2〉, 〈P3,⊥〉

Output: 〈P1, [αβ]1〉, 〈P2, [αβ]2〉

Domain: Zp
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Secure Multiplication [αβ] based on Beaver triple

1 P3 //generate Beaver triples and send shares to P1 and P2

(a) randomly choose u and v from Zp and generate the shares
([u]1, [u]2), ([v ]1, [v ]2) and ([uv ]1, [uv ]2)

(b) send [u]1, [v ]1, [uv ]1 to P1 and [u]2, [v ]2, [uv ]2 to P2

2 P1 //generate P1’s shares of [χ] and [γ] and send them to P2

(a) [χ]1 ← [α]1 + [u]1 and [γ]1 ← [β]1 + [v ]1

(b) send [χ]1 and [γ]1 to P2

3 P2 //generate P2’s shares of [χ] and [γ] and send them to P1

(a) [χ]2 ← [α]2 + [u]2 and [γ]2 ← [β]2 + [v ]2

(b) send [χ]2 and [γ]2 to P1
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Secure Multiplication [αβ] based on Beaver triple

4 P1 //reconstruct χ and γ and derive P1’s share of [αβ]

(a) χ← [χ]1 + [χ]2 and γ ← [γ]1 + [γ]2

(b) [αβ]1 ← χγ − χ[v ]1 − γ[u]1 + [uv ]1

5 P2 //reconstruct χ and γ and derive P2’s share of [αβ]

(a) χ← [χ]1 + [χ]2 and γ ← [γ]1 + [γ]2

(b) [αβ]2 ← −χ[v ]2 − γ[u]2 + [uv ]2
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Important Properties for Polynomial

Two fundamental properties of polynomial

1 A non-zero polynomial of degree t has at most t roots

2 Given t + 1 pairs (x1, y1), . . . , (xt+1, yt+1), with all the xi distinct,
there is a unique polynomial θ(x) of degree (at most) t such that
θ(xi ) = yi for 1 ≤ i ≤ t + 1
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Lagrange Interpolation

Given t + 1 pairs (x1, y1), . . . , (xt+1, yt+1), with all the xi distinct,
construct a polynomial θ(x) such that θ(xi ) = yi for 1 ≤ i ≤ t + 1

Let consider a simpler problem first:

Suppose y1 = 1 and yi = 0 for 2 ≤ i ≤ t + 1, what is θ(x)?
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Lagrange Interpolation

Let q(x) = (x − x2)(x − x3) · · · (x − xt+1): a polynomial of degree
t (the xi ’s are constants, and x appears t times)

We have q(xi ) = 0, for 2 ≤ i ≤ t + 1
q(x1) = (x1 − x2)(x1 − x3) · · · (x1 − xt+1), which is some
constant not equal to 0

Thus, we have θ(x) = q(x)/q(x1)
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Lagrange Interpolation

Let generalize the previous problem to any arbitrary index i :
yi = 1 and yj = 0 for all j 6= i

Define δi (x) the degree t polynomial that goes through these
t + 1 points:

δi (x) =
Πj 6=i (x − xj )

Πj 6=i (xi − xj )

It is easy to verify that

yi = δi (xi ) = 1
yj = δi (xj ) = 0,∀j 6= i
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Lagrange Interpolation

Given t + 1 points (x1, y1), . . . , (xt+1, yt+1) where xi ’s are distinct, find
a t-degree polynomial θ(x) going through these points:

1 Construct the t + 1 polynomials: δ1(x), . . . , δt+1(x)

2 θ(x) =
∑t+1

i=1 yiδi (x)
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Polynomial over a Finite Field

Suppose the finite field is Zp

The coefficients of θ(x) and all operations (e.g., addition,
multiplication) are in Zp

The two important properties of polynomial still hold as well as
the Lagrange Interpolation:

δi (x) =
Πj 6=i (x − xj )

Πj 6=i (xi − xj )
⇒ δi (x) = Πj 6=i (x−xj )(Πj 6=i (xi−xj ))−1 mod p

where (Πj 6=i (xi − xj ))−1 is the multiplicative inverse of
Πj 6=i (xi − xj ) in Zp
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Shamir Secret Sharing

When discussing additive secret sharing, we assumed each
party has a private value and wants to secretly share it with the
other party

There are many variations of how a value is secretly shared
among the participating parties

Here we use another variation to illustrate the Shamir secret
sharing scheme
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Shamir Secret Sharing

Suppose there is a dealer who wants to secretly share α and β
among m parties P1, . . . ,Pm

In practice, the dealer could be one of the parties and secretly
shares its private input for the subsequent MPC
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Shamir Secret Sharing

The dealer randomly generates two t-degree polynomials in Zp:

θα(x) = atx t + at−1x t−1 + · · ·+ a1x + α mod p
θβ(x) = btx t + bt−1x t−1 + · · ·+ b1x + β mod p

Note that θα(0) = α and θβ(0) = β

To generate the shares of α and β, the dealer does the following:

[α]it = θα(i) mod p, for 1 ≤ i ≤ m
[β]it = θβ(i) mod p, for 1 ≤ i ≤ m

We will omit the modp operation where the context is clear

The dealer sends [α]it and [β]it to Pi
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Share Reconstruction

To discover the original values α and β, at least t + 1 parties
need to pool their shares together

Suppose Pj1 , . . . ,Pjt+1 are t + 1 parties with shares
[α]j1t , . . . , [α]

jt+1
t where j1, . . . , jt+1 ⊂ {1, . . . ,m} and t < m

2

These parties can share their shares, and each can local
reconstruct the polynomial θα(x) using Lagrange interpolation
on the t + 1 points: (j1, [α]j1t ), . . . , (jt+1, [α]

jt+1
t )

Then compute θα(0) to retrieve α, and β can be derived similarly
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Secure Addition [α + β]t

To derive [α + β]t , each party adds its local shares; that is,

Pi : [α + β]it ← [α]it + [β]it

This works because adding the two local points (on the
y -coordinates) giving a point (i , [α + β]i ) on θα+β(x):

θα+β(x) = θα(x) + θβ(x)

= (at + bt )x t + · · ·+ (a1 + b1)x + (α + β)

As discussed previously, the parties need to have at least t + 1
points (j1, [α + β]j1t ), . . . , (jt+1, [α + β]

jt+1
t ) to reconstruct θα+β(x)

To retrieve α + β, set θα+β(0) = α + β
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Secure Multiplication between [α]t and a Constant c to
Result [c · α]t

c ∈ Zn (or in Zp) is known to all parties

To derive [c · α]t , Pi multiplies its local shares of α with c:

Pi : [c · α]it ← c · [α]it

This works because multiplying the local point (on the
y -coordinates) with c giving a point (i , [c · α]it ) on θc·α(x):

θc·α(x) = c · θα(x)

= (c · at )x t + · · ·+ (c · a1)x + (c · α)
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Secure Multiplication [αβ]t

If the parties need to perform this multiplication once, then they
can just simply multiple their local shares to produce a valid
point (i , [αβ]it ) on θ′αβ(x)

Since θ′αβ(x) has a degree of 2t and t < m
2 , we cannot use these

shares to perform additional secure multiplications

Otherwise, the original values cannot be retrieved due to the
degree of the polynomials (resulting from these additional
secure multiplications) would be equal to or greater than m

Key challenge: after each multiplication, transform θ′αβ(x) a
2t-degree polynomial to θαβ(x) a t-degree polynomial
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Secure Multiplication [αβ]t

To compute [αβ]t and solve the previously mentioned technical
challenge, there are several protocols

In what follows, we present an efficient protocol (based on
DN07) under the semi-honest adversary model
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Secure Multiplication [αβ]t - Main Steps of DN07

1 Each party locally multiplies its shares resulting a point on
θ′αβ(x), and obliviously randomizes it using [r ]2t to produce a
point on θ′αβ+r (x)

r is a random value in Zp, not known to the parties

2 Then each party sends its randomized point (on θ′αβ+r (x)) to a
designated party, say P1

3 P1 performs Lagrange interpolation on 2t + 1 points to retrieve
αβ + r and sends it to the other parties

4 Each party subtracts the randomness to obtain a point on θαβ(x)
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Secure Multiplication [xy ]t - DN07

Input: 〈Pi , [α]it , [β]it〉, for 1 ≤ i ≤ m

Output: 〈Pi , [αβ]it〉, for 1 ≤ i ≤ m

Domain: Zp and 1 ≤ t < m
2
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Secure Multiplication [xy ]t - DN07

1 Pi , for 1 ≤ i ≤ m:

Randomly generate ri from Zp and use Shamir secret
sharing to secretly share ri with a random 2t-degree
polynomial and a random t-degree polynomial
At the end of the previous step, the party has
[r1]i2t , . . . , [rm]i2t and [r1]it , . . . , [rm]it )
Derive [r ]i2t ← [r1]i2t + · · ·+ [rm]i2t and [r ]it ← [r1]it + · · ·+ [rm]it
Derive [αβ + r ]i2t ← [α]it [β]it + [r ]i2t and send it to P1
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Secure Multiplication [xy ]t - DN07

2 P1:

Reconstruct θ′αβ+r (x) based on 2t + 1 pairs of (i , [αβ + r ]i2t )
Derive αβ + r ← θ′αβ+r (0) and generate a random t-degree
polynomial θαβ+r to secretly share αβ + r
Send [αβ + r ]it to Pi

3 Pi , for 1 ≤ i ≤ m:

Derive [αβ]it ← [αβ + r ]it − [r ]it
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Comparison Circuit

Suppose we compare α and β, and both are four-bit numbers

α ≡ 〈α3, α2, α1, α0〉
β ≡ 〈β3, β2, β1, β0〉

α3 and β3 indicate the most significant bits of α and β
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Comparison Circuit

1 Compute the bitwise xor of α and β

a3 = α3 ⊕ β3
a2 = α2 ⊕ β2
a1 = α1 ⊕ β1
a0 = α0 ⊕ β0

2 Let j be the most significant bit location where αj 6= βj , set
b3 = 0, . . . ,bj+1 = 0 and bj = 1, . . . ,b0 = 1

b3 = a3
b2 = a2 ∨ b3
b1 = a1 ∨ b2
b0 = a0 ∨ b1
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Comparison Circuit

3 Let j be the most significant bit location where αj 6= βj , set cj = 1
and ci = 0 where i 6= j

c3 = b3
c2 = b2 ⊕ b3
c1 = b1 ⊕ b2
c0 = b0 ⊕ b1

4 Multiple c and α bitwise

d3 = c3 ∧ α3
d2 = c2 ∧ α3
d1 = c1 ∧ α2
d0 = c0 ∧ α1
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Comparison Circuit

5 Derive the comparison result

e2 = d2 ∨ d3
e1 = d1 ∨ e2
e0 = d0 ∨ e1
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Comparison Circuit

Key Obervation

The comparison result is stored in e0

e0 = 1→ α > β

e0 = 0→ α ≤ β

Compute ⊕, ∨ and ∧ in terms of −, + and ×

x ⊕ y ≡ x + y − 2xy

x ∨ y ≡ x + y − xy

x ∧ y ≡ xy

Since we know how to compute −, + and × securely, we can
evaluate the comparison circuit securely
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Comparison Circuit

Secure Implementation of Step 1 of the Boolean Circuit

ai = αi ⊕ βi

ai = αi + βi − 2αiβi

The main steps with inputs [αi ] and [βi ]

1 [αiβi ]← Secure_Multiplication([αi ], [βi ])

2 [2αiβi ]← 2[αiβi ]

3 [ai ]← [αi ] + [βi ]− [2αiβi ]
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