Zero-Knowledge Proofs Computations over \mathbb{Z}_p Secret Sharing

CMP_SC 8001 - Introduction to Secure Multiparty Computation Fundamental MPC Protocols - Part 1

Wei Jiang

Department of Electrical Engineering and Computer Science University of Missouri

Wei Jiang - http://faculty.missouri.edu/wjiang/

Zero-Knowledge Proofs Computations over \mathbb{Z}_p Secret Sharing

Outline

- Shamir Secret Sharing
- Secure Comparison

< ロ > < 同 > < E > < E > E = のQC

Zero-Knowledge Proofs Computations over \mathbb{Z}_p

Secret Sharing

Outline

Zero-Knowledge Proofs Basic Properties Graph 3-Coloring Hamiltonian Cycle

- The Greatest Common Divisor Group and Field
- Additive Secret Sharing Shamir Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

What is Zero-Knowledge (ZK) Proof

- **Completeness:** if the statement is true, a prover can convince an honest verifier that the statement is true
- **Soundness**: if the statement is false, a prover can convince an honest verifier to accept this fact with negligible probability
- Zero-knowledge: if the statement is true, no verifier can learn anything, except the fact that the statement is true

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

How to Show a Proof is ZK

- Similar to the read-ideal paradigm
- There exists a simulator for any verifier,
 - given only the statement to be proved
 - it can produce view indistinguishable from an interaction between the honest prover and the verifier

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

3-Colorable Graph

Definition

A graph $G = \langle V, E \rangle$ is 3-colorable if V can be colored with three different colors, such that for any two vertices v_i and v_j connected via an edge e_{ij} , $\text{Color}(v_i) \neq \text{Color}(v_j)$

Key Facts

- If G 3-colorable, permuting its three colors results another valid 3-coloring
- If G not 3-colorable, there exists at least a pair of adjacent vertices having the same color
- Graph 3-coloring is a NP-Complete problem

Zero-Knowledge Proofs

Computations over \mathbb{Z}_p Graph 3-Coloring Secret Sharing

ZK-Proof for Graph 3-Coloring

- Public input:
 - $G = \langle V, E \rangle$
 - H: a secure commitment function
- Private input:
 - Prover: w, a 3-coloring of G
 - Verifier:

Basic Properties Graph 3-Coloring Hamiltonian Cycle

ZK-Proof for Graph 3-Coloring

Prover:

- randomly permute the 3 colors of w to produce w'
- send H(w') to the verifier, where $H(w') = \{H(v_i, \operatorname{Color}(v_i)) | \forall i, v_i \in V\}$
- **2** Verifier:
 - randomly select $e_{ij} \in E$ (or $(i, j) \in E$)
 - send e_{ij} or (i, j) to the prover
- **3 Prover**: send $\langle v_i, \text{Color}(v_i) \rangle$ and $\langle v_j, \text{Color}(v_j) \rangle$ to the verifier
- Verifier: if the commitments can be verified and Color(v_i) ≠ Color(v_j), return accept; otherwise, return reject

Basic Properties Graph 3-Coloring Hamiltonian Cycle

ZK-Proof for Graph 3-Coloring

- **Completeness**: if *w* is a valid 3-coloring of *G*, an honest verifier will always return **accept**
- Soundness:

 - the above probability is also called soundness error

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Making the Soundness Error Negligible

• The previous proof is not very sound:

- the accept probability or the soundness error $1 \frac{1}{|E|}$ is too high when *w* is not a valid 3-coloring
- how to make the soundness error negligible?

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Making the Soundness Error Negligible

- Run the above proof n|E| times independently
- The verifier returns accept if all n|E| executions returns accept
- Soundness error:

$$\left(1-rac{1}{|E|}
ight)^{n|E|}\leq rac{1}{e^n}$$

using the following inequality: $(1 + x)^t \le e^{tx}$ for any real number x and t with t > 0

CMP SC 8001

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Zero Knowledge

- To prove the previous proof is zero-knowledge, we need to build a simulator *S*
- Based on the public information, *S* generates a simulated view of the interaction between a prover (*P*) and a verifier (*V*)
- If the simulated view is computationally indistinguishable from the real interaction or execution of the proof, the proof is zero-knowledge when *V* is computationally bounded

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Zero Knowledge - the Simulator

Simulator for graph 3-coloring

- *S* randomly chooses an edge $e_{ij} \in E$ and colors v_i and v_j with different colors, and colors the rest the same color to produce \hat{w} . Then *S* commits \hat{w} , denoted by $H(\hat{w})$
- S simulates V using H(ŵ), and receives (i', j'), the first message V sends
 - If (i, j) = (i', j'), then *S* can honestly answer the query and simulate the rest of the protocol, and outputs the transcript:

 $\texttt{View}_{\mathcal{S}} = \{ H(\hat{w}), \langle v_i, \texttt{Color}(v_i) \rangle, \langle v_j, \texttt{Color}(v_j) \rangle, \texttt{accept} \}$

If (*i*, *j*) ≠ (*i*', *j*'), then S restarts from the beginning with a newly chosen (*i*, *j*)

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Zero Knowledge - the Simulator

- Note that Prob((*i*, *j*) = (*i*', *j*')) ≈ ¹/_{|E|}, since the selection of (*i*', *j*') is only based on the commitments, which cannot bias the decision due to the hiding property
- Thus, *S* succeeds with probability about 1/|*E*|, and the expected number of iterations to terminate is |*E*|

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Zero Knowledge - Real vs Ideal (Simulator)

- $View_{\pi} = \{H(w'), \langle v_i, Color(v_i) \rangle, \langle v_j, Color(v_j) \rangle, accept\}$
- $View_S = \{H(\hat{w}), \langle v_i, Color(v_i)^* \rangle, \langle v_j, Color(v_j)^* \rangle, accept\}$
- View_π and View_S are computationally indistinguishable:
 - *H*(*w*') and *H*(*ŵ*) are computationally indistinguishable due to the hiding property of *H*
 - (Color(v_i), Color(v_j)), and (Color(v_i)*, Color(v_j)*) are identically distributed since the colors are randomly permuted for each execution of the proof

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Hamiltonian Cycle

- Given a graph G = ⟨V, E⟩, a Hamiltonian cycle includes every vertex v_i ∈ V exactly once
- The problem of finding a Hamiltonian cycle in *G* is known to be NP-Complete

Basic Properties Graph 3-Coloring Hamiltonian Cycle

ZK-Proof for Hamiltonian Cycle

- Public information: G is known to both Alice and Bob
- Private inputs:
 - Alice: $C \subseteq E$ a Hamiltonian cycle in G
 - Bob:
- ZK-proof: Alice proves to Bob that she knows C without disclosing any information about it to Bob

Zero-Knowledge Proofs Computations over \mathbb{Z}_p Secret Sharing Basic Properties Graph 3-Coloring Hamiltonian Cycle

ZK-Proof for Hamiltonian Cycle

- Alice chooses a random permutation (on the vertices of *G*): π(*G*) → *G*', and sends *H*(*G*') and *H*(π), the commitments of *G* and π, to Bob
- 2 Bob randomly chooses $b \in \{0, 1\}$, and sends it to Alice
- Alice performs the following, based on the challenge b:
 - b = 0: open G' and π
 - b = 1: compute C' ← π(C) and open only the commitments related to C'
- Bob returns accept if either verification below succeeds:
 - b = 0: verify the commitments and check if $G' = \pi(G)$
 - b = 1: verify the commitments related to C' and check if C' is a Hamiltonian cycle

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Completeness

- If Alice does know a Hamiltonian cycle in *G*, she can easily satisfy Bob's either challenge:
 - the graph isomorphic mapping π producing G' from G, or
 - a Hamiltonian cycle C' in G' produced based on π

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Soundness

- If Alice does not know *C*, she can guess which question Bob will ask to generate either
 - a graph isomorphic to G, or
 - a Hamiltonian cycle for an unrelated graph
- However, since she does not know a Hamiltonian cycle for *G*, she cannot do both
- Soundness error: ¹/₂
- Similar to graph 3-coloring, the soundness error can be reduced to $\frac{1}{2^n}$ by executing the proof *n* times

CMP_SC 8001

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Soundness

- Conversely, if Alice has prior knowledge about the challenge bit *b*, she can fool Bob without knowing a valid *C*
- If Alice knew b = 0, she would commit to an arbitrary permutation π(G) and still pass the challenge
- If Alice knew b = 1, she would commit to a complete graph with |G| vertices not a permutation of G, and she would then reveal any arbitrary Hamiltonian cycle on the complete graph to Bob

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Zero Knowledge

- Alice's answers do not reveal the original Hamiltonian cycle C
 - Each round, Bob only learns *G*' is isomorphic to *G* or a Hamiltonian cycle in *G*'
 - He would need both answers for a single *G*' to discover the cycle *C* in *G*
- Thus, *C* remains unknown as long as Alice can generate a distinct *G*' every round

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Zero Knowledge

- Prove there exists a probabilistic-polynomial time (PPT) simulator S for every PPT malicious verifier V* such that
 - the output distribution of the interaction between S and each V* is computationally indistinguishable from that of the interaction between each V* and an honest prover P
- *S* predicts the challenge bit *b*' and commits either to a valid graph permutation or the complete graph with |*G*| vertices with a trivial Hamiltonian cycle
- If the predicted challenge bit matches the actual challenge bit
 b' = b, then S proceeds by successfully responding to the challenge; otherwise, S rewinds the transcript and tries again

Secret Sharing

Basic Properties Graph 3-Coloring Hamiltonian Cycle

Simulator Complexity

- The probability of guessing b' correctly is $\frac{1}{2}$
- Thus, the expected number of iterations is 2
- In other words, the simulator runs in expected polynomial time

The Greatest Common Divisor Group and Field

Outline

Zero-Knowledge Proofs
 Basic Properties
 Graph 3-Coloring

- Hamiltonian Cycle
- Computations over Z_p
 The Greatest Common Divisor
 Group and Field
- 3 Secret SharingAdditive Secret Sharing
 - Shamir Secret Sharing
 - Secure Comparison

The Greatest Common Divisor Group and Field

Division Theorem

Theorem (Division Algorithm)

If a and b are integers such that b > 0, then there are unique integers q and r such that a = bq + r, where $0 \le r < b$

The Greatest Common Divisor Group and Field

Linear Combination

Definition (Linear Combination)

If *a* and *b* are integers, then a linear combination of *a* and *b* is a sum of the form ax + by, where both *x* and *y* are integers

Example

- What are the linear combinations of 9x + 15y?
- $-3 = 9 \cdot (-2) + 15 \cdot 1$
- $\bullet \ 0 = 9 \cdot 0 + 15 \cdot 0$
- $3 = 9 \cdot 2 + 15 \cdot (-1)$
- It can be shown that the set of all linear combinations of 9 and 15 is {..., -12, -9, -6, -3, 0, 3, 6, 9, 12, ...}

The Greatest Common Divisor Group and Field

The Greatest Common Divisor

Definition (Greatest Common Divisor)

The greatest common divisor (gcd) of two integers a and b, not both zero, is the largest of the common divisors of a and b

Theorem (GCD as a Linear Combination)

The greatest common divisor of the integers a and b, not both 0, is the least positive integer that is a linear combination of a and b

The Greatest Common Divisor Group and Field

Some Facts related to GCD and Divisibility

- Fact 1: d|a and $d|b \implies d|(am+bn)$
- Fact 2: d|a and $d|b \implies d| \operatorname{gcd}(a, b)$
- Fact 3: gcd(0,0) = 0 and gcd(a,0) = |a|

The Greatest Common Divisor Group and Field

The Euclidean Algorithm

Theorem

For any non-negative integer a and any positive integer b, $gcd(a, b) = gcd(b, a \mod b)$

The Greatest Common Divisor Group and Field

Algorithm 1 Euclid(*a*, *b*)

Require: *a* and *b* are non-negative integers

- 1: **if** b = 0 **then**
- 2: return a
- 3: **else**
- 4: return Euclid(b, a mod b)
- 5: end if

The Greatest Common Divisor Group and Field

Find the gcd of 30 and 72

• First we use the division theorem to write:

 $72 = 2 \cdot 30 + 12$

The Euclidean theorem tells us that

$$gcd(72,30) = gcd(30,72 \mod 30) = gcd(30,12)$$

$$30 = 2 \cdot 12 + 6$$

$$gcd(30,12) = gcd(12,30 \mod 12) = gcd(12,6)$$

$$12 = 2 \cdot 6 + 0$$

$$gcd(12,6) = gcd(6,12 \mod 6) = gcd(6,0) = 6$$

• gcd(72, 30) = 6

CMP SC 8001

The Greatest Common Divisor Group and Field

The Extended Euclidean

Find the GCD of 801 and 154			
801	=	5 · 154 + 31	(1)
154	=	4 · 31 + 30	(2)
31	=	$1 \cdot 30 + 1$	(3)
30	=	$30 \cdot 1 + 0$	(4)
1	=	$1 \cdot 1 + 0$	(5)

• gcd(801, 154) = gcd(1, 0) = 1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Greatest Common Divisor Group and Field

The Extended Euclidean

Find the linear combination of $gcd(801, 154) = 801 \cdot x + 154 \cdot y$

Starting with the GCD based Equation (5): $1 = 1 \cdot 1 + 0 \cdot 0$ (q = 1, x = 1, y = 0)Replace 0 in the above according to Equation (4): $1 = 30 \cdot 0 + 1 \cdot 1$ (a = 1, x = 0, v = 1)Replace 1 in the above according to Equation (3): $1 = 31 \cdot 1 + 30 \cdot (-1)$ (q = 1, x = 1, y = -1)Replace 30 in the above according to Equation (2): $1 = 154 \cdot (-1) + 31 \cdot 5$ (a = 1, x = -1, v = 5)Replace 31 in the above according to Equation (1): $1 = 801 \cdot 5 + 154 \cdot (-26)$ (g = 1, x = 5, y = -26)

CMP SC 8001

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □□ シタの

The Greatest Common Divisor Group and Field

The Extended Euclidean

- The algorithm terminates with b = 0 and a = g; thus, from these parameters, the linear combination for g is $g = g \cdot 1 + 0 \cdot 0$
- Starting from these coefficients (x, y) = (1, 0), we can go backwards up the recursive calls
- We need to figure out how the coefficients x and y change during the transition from (a, b) to (b, a mod b)

The Greatest Common Divisor Group and Field

The Extended Euclidean

- Assuming we found the coefficients (x', y') for $(b, a \mod b)$ $g = b \cdot x' + (a \mod b) \cdot y'$
- We want to find the pair (x, y) for (a, b):

 $g = a \cdot x + b \cdot y$

• We can represent a mod b as:

 $a \mod b = a - \left\lfloor \frac{a}{b} \right\rfloor \cdot b$

• Replacing this in the coefficient equation for (x', y') gives:

$$g = b \cdot x' + (a \mod b) \cdot y' = b \cdot x' + (a - \lfloor \frac{a}{b} \rfloor \cdot b) \cdot y'$$

The Greatest Common Divisor Group and Field

The Extended Euclidean

• After rearranging and combining the terms, we have:

$$g = a \cdot y' + b \cdot \left(x' - y' \cdot \left\lfloor \frac{a}{b} \right\rfloor\right)$$

• As a result, the values of x and y are:

$$\begin{aligned} x &= y' \\ y &= x' - y' \cdot \left\lfloor \frac{a}{b} \right\rfloor \end{aligned}$$

CMP_SC 8001

The Greatest Common Divisor Group and Field

The Extended Euclidean

Algorithm 2 Extended_Euclid(*a*, *b*)

Require: *a* and *b* are non-negative integers

- 1: **if** b = 0 **then**
- 2: return (*a*, 1, 0)

3: **else**

- 4: $(g', x', y') = \text{Extended}_\text{Euclid}(b, a \mod b)$
- 5: $(g, x, y) = (g', y', x' \lfloor a/b \rfloor y')$
- 6: return (g, x, y)
- 7: end if

CMP_SC 8001

The Greatest Common Divisor Group and Field

Group Definition

A set of objects *G* along with a binary operation (\bullet) is called a group if the following four properties hold:

- Closure: If $a, b \in G$, then $c = a \bullet b \in G$
- Associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c)$
- Identity element: There exists a unique element *e* in *G*, such that for every *a* ∈ *G*, we have *a e* = *e a* = *a*
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$

A group is **commutative** or **abelian** if for any two elements $a, b \in G$, we have $a \bullet b = b \bullet a$

CMP_SC 8001

The Greatest Common Divisor Group and Field

Group Examples

- Integers Z is a group under addition (+), and real numbers R with either addition (+) or multiplication (×) operation is a group
- ℤ_n = {0, 1, ..., n − 1} with addition modulo n (+, mod n) is a group where n is a positive integer:
 - $a, b \in \mathbb{Z}_n$, then $c = a + b \mod n$ is also in \mathbb{Z}_n
 - The identity element is 0, and the inverse of *a* is *n* − *a*
 - $7,15\in\mathbb{Z}_{16},$ then 7+15 mod 16=6

The Greatest Common Divisor Group and Field

Group Examples

- ℤ_p⁺ = {1,..., p − 1} with multiplication modulo p (×, modp) is a group where p is a prime:
 - $a, b \in \mathbb{Z}_p^+$, then $c = a \times b \mod p$ is also in \mathbb{Z}_p^+
 - The identity element is 1
- Given $a \in \mathbb{Z}_p^+$, find the inverse of a (denoted by a^{-1}):

•
$$gcd(a,p) = a \cdot x + p \cdot y$$

•
$$a^{-1} = x \mod p$$

The Greatest Common Divisor Group and Field

Ring and Field

Definition (Ring)

A **ring** is a set of elements with two binary operations, addition (+) and multiplication (\times) :

- It is an abelian group with identify element 0 under addition
- Its multiplication is associative a × (b × c) = (a × b) × c and distributive over addition a × (b + c) = a × b + a × c and (b + c) × a = b × a + c × a

A ring is commutative if $a \times b = b \times a$ for every *a* and *b*

CMP_SC 8001

The Greatest Common Divisor Group and Field

Ring and Field

Definition (Field)

A ring is called a **field** if its elements, except for 0, form a commutative group under \times

Z_p = {0, 1, ..., p − 1} with (+, mod p) and (×, mod p) is a field where p is a prime:

- The identity element is 0 under (+, mod p)
- The identity element is 1 under (×, mod p)

CMP SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Outline

Zero-Knowledge Proofs Basic Properties Graph 3-Coloring

- Hamiltonian Cycle
- Computations over Z_p
 The Greatest Common Divisor
 Group and Field
 - Secret SharingAdditive Secret Sharing
 - Shamir Secret Sharing
 - Secure Comparison

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Common Notations

- $\mathbb{Z}_n = \{0, 1, ..., n-1\}$
- P_i : a participating party indexed by $i \in \{1, \ldots, m\}$
- [v] = {[v]¹,...,[v]^m}: a value v ∈ Z_n is secretly shared among the parties where [v]ⁱ (1 ≤ i ≤ m) is the share held by P_i
- [v]_t = {[v]_t¹,...,[v]_t^m}: a value v is secretly shared using a t-degree polynomial over a finite field among the parties

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secret Sharing in \mathbb{Z}_n

- Suppose there are two parties P₁ and P₂, and each has a private value α and β in Z_n respectively
- To secretly share α ∈ Z_n between P₁ and P₂, P₁ performs the following steps:
 - randomly select r from \mathbb{Z}_n
 - set $[\alpha]^1 = r$ and $[\alpha]^2 = \alpha r \mod n$
 - send $[\alpha]^2$ to P_2
- β can be secretly shared similarly by P_2

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Addition $[\alpha + \beta]$

• To derive $[\alpha + \beta]$, each party adds its local shares; that is,

•
$$P_1: [\alpha + \beta]^1 \leftarrow [\alpha]^1 + [\beta]^1 \mod n$$

•
$$P_2$$
: $[\alpha + \beta]^2 \leftarrow [\alpha]^2 + [\beta]^2 \mod n$

• We will omit the mod n operation where the context is clear

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication between $[\alpha]$ and a Constant *c* to Result $[c \cdot \alpha]$

- $c \in \mathbb{Z}_n$ (or in \mathbb{Z}_p) is known to both parties
- To derive $[c \cdot \alpha]$, each party multiplies its local shares of α with c:

•
$$P_1: [\mathbf{c} \cdot \alpha]^1 \leftarrow \mathbf{c} \cdot [\alpha]^1$$

•
$$P_2$$
: $[\mathbf{C} \cdot \alpha]^2 \leftarrow \mathbf{C} \cdot [\alpha]^2$

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]$

• Suppose $\chi = \alpha + u$ and $\gamma = \beta + v$, and we have

$$\chi \gamma = \alpha \beta + \mathbf{v} \alpha + \mathbf{u} \beta + \mathbf{u} \mathbf{v}$$

It is easy to see that

$$\alpha\beta = \chi\gamma - \chi \mathbf{v} - \gamma \mathbf{u} + \mathbf{u}\mathbf{v}$$

• We perform multiplication of $\alpha\beta$ based on χ , γ , u and v

CMP SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]$

• To compute $[\alpha\beta]$, we follow the relation below:

$$[\alpha\beta]^1 = \chi\gamma - \chi[\mathbf{v}]^1 - \gamma[\mathbf{u}]^1 + [\mathbf{u}\mathbf{v}]^1 [\alpha\beta]^2 = -\chi[\mathbf{v}]^2 - \gamma[\mathbf{u}]^2 + [\mathbf{u}\mathbf{v}]^2$$

- This implies that if both P₁ and P₂ know χ, γ, [u], [v] and [uv], then they can derive [αβ]
- $\langle [u], [v], [uv] \rangle$ is called a Beaver triple

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]$

- To compute $[\alpha\beta]$, we need an additional party P_3
- The purpose of using P_3 is to generate the Beaver triple $\langle [u], [v], [uv] \rangle$ shared between P_1 and P_2
- From [u] and [v], P_1 and P_2 can collaboratively derive χ and γ
- Then $[\alpha\beta]$ can be easily derived by both parties as shown earlier

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]$

- Input: $\langle P_1, [\alpha]^1, [\beta]^1 \rangle, \langle P_2, [\alpha]^2, [\beta]^2 \rangle, \langle P_3, \perp \rangle$
- Output: $\langle P_1, [\alpha\beta]^1 \rangle, \langle P_2, [\alpha\beta]^2 \rangle$
- Domain: \mathbb{Z}_p

Zero-Knowledge Proofs Computations over \mathbb{Z}_p Secret Sharing Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]$ based on Beaver triple

- P₃ //generate Beaver triples and send shares to P₁ and P₂
 - and only choose u and v from \mathbb{Z}_p and generate the shares $([u]^1, [u]^2), ([v]^1, [v]^2)$ and $([uv]^1, [uv]^2)$
 - Send $[u]^1, [v]^1, [uv]^1$ to P_1 and $[u]^2, [v]^2, [uv]^2$ to P_2
- 2 P_1 //generate P_1 's shares of $[\chi]$ and $[\gamma]$ and send them to P_2

(a)
$$[\chi]^1 \leftarrow [\alpha]^1 + [u]^1$$
 and $[\gamma]^1 \leftarrow [\beta]^1 + [v]^1$
(b) send $[\chi]^1$ and $[\gamma]^1$ to P_2

3 P_2 //generate P_2 's shares of $[\chi]$ and $[\gamma]$ and send them to P_1

(a)
$$[\chi]^2 \leftarrow [\alpha]^2 + [u]^2$$
 and $[\gamma]^2 \leftarrow [\beta]^2 + [v]^2$
(b) send $[\chi]^2$ and $[\gamma]^2$ to P_1

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]$ based on Beaver triple

CMP_SC 8001

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Important Properties for Polynomial

Two fundamental properties of polynomial

- A non-zero polynomial of degree t has at most t roots
- 2 Given t + 1 pairs $(x_1, y_1), \ldots, (x_{t+1}, y_{t+1})$, with all the x_i distinct, there is a unique polynomial $\theta(x)$ of degree (at most) t such that $\theta(x_i) = y_i$ for $1 \le i \le t + 1$

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Lagrange Interpolation

- Given t + 1 pairs $(x_1, y_1), \ldots, (x_{t+1}, y_{t+1})$, with all the x_i distinct, construct a polynomial $\theta(x)$ such that $\theta(x_i) = y_i$ for $1 \le i \le t + 1$
- Let consider a simpler problem first:
 - Suppose $y_1 = 1$ and $y_i = 0$ for $2 \le i \le t + 1$, what is $\theta(x)$?

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Lagrange Interpolation

- Let q(x) = (x − x₂)(x − x₃) · · · (x − x_{t+1}): a polynomial of degree t (the x_i's are constants, and x appears t times)
 - We have $q(x_i) = 0$, for $2 \le i \le t + 1$
 - $q(x_1) = (x_1 x_2)(x_1 x_3) \cdots (x_1 x_{t+1})$, which is some constant not equal to 0
- Thus, we have $\theta(x) = q(x)/q(x_1)$

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Lagrange Interpolation

- Let generalize the previous problem to any arbitrary index *i*: $y_i = 1$ and $y_j = 0$ for all $j \neq i$
- Define $\delta_i(x)$ the degree *t* polynomial that goes through these t + 1 points:

$$\delta_i(\boldsymbol{x}) = \frac{\prod_{j \neq i} (\boldsymbol{x} - \boldsymbol{x}_j)}{\prod_{j \neq i} (\boldsymbol{x}_i - \boldsymbol{x}_j)}$$

It is easy to verify that

$$y_i = \delta_i(x_i) = 1$$

 $y_j = \delta_i(x_j) = 0, \forall j \neq i$

CMP SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Lagrange Interpolation

Given t + 1 points $(x_1, y_1), \ldots, (x_{t+1}, y_{t+1})$ where x_i 's are distinct, find a *t*-degree polynomial $\theta(x)$ going through these points:

- Construct the t + 1 polynomials: $\delta_1(x), \ldots, \delta_{t+1}(x)$
- 2 $\theta(\mathbf{x}) = \sum_{i=1}^{t+1} \mathbf{y}_i \delta_i(\mathbf{x})$

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Polynomial over a Finite Field

- Suppose the finite field is \mathbb{Z}_p
- The coefficients of θ(x) and all operations (e.g., addition, multiplication) are in Z_p
- The two important properties of polynomial still hold as well as the Lagrange Interpolation:

$$\delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} \Rightarrow \delta_i(x) = \prod_{j \neq i} (x - x_j) (\prod_{j \neq i} (x_i - x_j))^{-1} \mod p$$

where $(\prod_{j \neq i} (x_i - x_j))^{-1}$ is the multiplicative inverse of $\prod_{j \neq i} (x_i - x_j)$ in \mathbb{Z}_p

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Shamir Secret Sharing

- When discussing additive secret sharing, we assumed each party has a private value and wants to secretly share it with the other party
- There are many variations of how a value is secretly shared among the participating parties
- Here we use another variation to illustrate the Shamir secret sharing scheme

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Shamir Secret Sharing

- Suppose there is a dealer who wants to secretly share α and β among *m* parties P₁,..., P_m
- In practice, the dealer could be one of the parties and secretly shares its private input for the subsequent MPC

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Shamir Secret Sharing

- The dealer randomly generates two *t*-degree polynomials in \mathbb{Z}_{p} :
 - $\theta_{\alpha}(x) = a_t x^t + a_{t-1} x^{t-1} + \dots + a_1 x + \alpha \mod p$
 - $\theta_{\beta}(x) = b_t x^t + b_{t-1} x^{t-1} + \dots + b_1 x + \beta \mod p$
- Note that $\theta_{\alpha}(0) = \alpha$ and $\theta_{\beta}(0) = \beta$
- To generate the shares of α and β , the dealer does the following:
 - $[\alpha]_t^i = \theta_{\alpha}(i) \mod p$, for $1 \le i \le m$
 - $[\beta]_t^i = \theta_\beta(i) \mod p$, for $1 \le i \le m$
- We will omit the mod p operation where the context is clear
- The dealer sends $[\alpha]_t^i$ and $[\beta]_t^i$ to P_i

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Share Reconstruction

- To discover the original values α and β, at least t + 1 parties need to pool their shares together
- Suppose $P_{j_1}, \ldots, P_{j_{t+1}}$ are t+1 parties with shares $[\alpha]_t^{j_1}, \ldots, [\alpha]_t^{j_{t+1}}$ where $j_1, \ldots, j_{t+1} \subset \{1, \ldots, m\}$ and $t < \frac{m}{2}$
- These parties can share their shares, and each can local reconstruct the polynomial θ_α(x) using Lagrange interpolation on the t + 1 points: (j₁, [α]_t^{j₁}),...,(j_{t+1}, [α]_t^{j_{t+1}})
- Then compute $\theta_{\alpha}(0)$ to retrieve α , and β can be derived similarly

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Addition $[\alpha + \beta]_t$

- To derive [α + β]_t, each party adds its local shares; that is,
 P_i: [α + β]ⁱ_t ← [α]ⁱ_t + [β]ⁱ_t
- This works because adding the two local points (on the y-coordinates) giving a point (i, [α + β]ⁱ) on θ_{α+β}(x):

$$\begin{array}{rcl} \theta_{\alpha+\beta}(x) &=& \theta_{\alpha}(x)+\theta_{\beta}(x)\\ &=& (a_t+b_t)x^t+\cdots+(a_1+b_1)x+(\alpha+\beta) \end{array}$$

• As discussed previously, the parties need to have at least t + 1 points $(j_1, [\alpha + \beta]_t^{j_1}), \ldots, (j_{t+1}, [\alpha + \beta]_t^{j_{t+1}})$ to reconstruct $\theta_{\alpha+\beta}(x)$

• To retrieve $\alpha + \beta$, set $\theta_{\alpha+\beta}(\mathbf{0}) = \alpha + \beta$

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication between $[\alpha]_t$ and a Constant *c* to Result $[c \cdot \alpha]_t$

- $c \in \mathbb{Z}_n$ (or in \mathbb{Z}_p) is known to all parties
- To derive $[c \cdot \alpha]_t$, P_i multiplies its local shares of α with c:

• $P_i: [\mathbf{c} \cdot \alpha]_t^i \leftarrow \mathbf{c} \cdot [\alpha]_t^i$

 This works because multiplying the local point (on the y-coordinates) with c giving a point (i, [c · α]ⁱ_t) on θ_{c·α}(x):

$$\theta_{\boldsymbol{c}\cdot\boldsymbol{\alpha}}(\boldsymbol{x}) = \boldsymbol{c}\cdot\boldsymbol{\theta}_{\boldsymbol{\alpha}}(\boldsymbol{x}) \\ = (\boldsymbol{c}\cdot\boldsymbol{a}_{t})\boldsymbol{x}^{t} + \dots + (\boldsymbol{c}\cdot\boldsymbol{a}_{1})\boldsymbol{x} + (\boldsymbol{c}\cdot\boldsymbol{\alpha})$$

CMP SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]_t$

- If the parties need to perform this multiplication once, then they can just simply multiple their local shares to produce a valid point (*i*, [αβ]ⁱ_t) on θ'_{αβ}(x)
- Since θ'_{αβ}(x) has a degree of 2t and t < m/2, we cannot use these shares to perform additional secure multiplications
- Otherwise, the original values cannot be retrieved due to the degree of the polynomials (resulting from these additional secure multiplications) would be equal to or greater than *m*
- **Key challenge**: after each multiplication, transform $\theta'_{\alpha\beta}(x)$ a 2*t*-degree polynomial to $\theta_{\alpha\beta}(x)$ a *t*-degree polynomial

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]_t$

- To compute [αβ]_t and solve the previously mentioned technical challenge, there are several protocols
- In what follows, we present an efficient protocol (based on DN07) under the semi-honest adversary model

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication $[\alpha\beta]_t$ - Main Steps of DN07

- Each party locally multiplies its shares resulting a point on $\theta'_{\alpha\beta}(x)$, and obliviously randomizes it using $[r]_{2t}$ to produce a point on $\theta'_{\alpha\beta+r}(x)$
 - *r* is a random value in \mathbb{Z}_p , not known to the parties
- 2 Then each party sends its randomized point (on $\theta'_{\alpha\beta+r}(x)$) to a designated party, say P_1
- **3** P_1 performs Lagrange interpolation on 2t + 1 points to retrieve $\alpha\beta + r$ and sends it to the other parties
- Each party subtracts the randomness to obtain a point on $\theta_{\alpha\beta}(x)$

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication [xy]_t - DN07

- Input: $\langle P_i, [\alpha]_t^i, [\beta]_t^i \rangle$, for $1 \le i \le m$
- Output: $\langle P_i, [\alpha\beta]_t^i \rangle$, for $1 \le i \le m$
- Domain: \mathbb{Z}_p and $1 \le t < \frac{m}{2}$

Zero-Knowledge Proofs Computations over \mathbb{Z}_p Secret Sharing Shamir Secret Sharing

Secure Multiplication $[xy]_{f}$ - DN07

① P_i , for 1 < i < m:

- Randomly generate r_i from \mathbb{Z}_p and use Shamir secret sharing to secretly share r_i with a random 2t-degree polynomial and a random *t*-degree polynomial
- At the end of the previous step, the party has $[r_1]_{2t}^i, \ldots, [r_m]_{2t}^i$ and $[r_1]_{t}^i, \ldots, [r_m]_{t}^i$
- Derive $[r]_{2t}^i \leftarrow [r_1]_{2t}^i + \cdots + [r_m]_{2t}^i$ and $[r]_t^i \leftarrow [r_1]_t^i + \cdots + [r_m]_t^i$
- Derive $[\alpha\beta + r]_{2t}^{i} \leftarrow [\alpha]_{t}^{i}[\beta]_{t}^{i} + [r]_{2t}^{i}$ and send it to P_{1}

CMP SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Secure Multiplication [*xy*]_{*t*} - DN07

2 *P*₁:

- Reconstruct $\theta'_{\alpha\beta+r}(x)$ based on 2t + 1 pairs of $(i, [\alpha\beta+r]_{2t}^i)$
- Derive αβ + r ← θ'_{αβ+r}(0) and generate a random t-degree polynomial θ_{αβ+r} to secretly share αβ + r
- Send $[\alpha\beta + r]_t^i$ to P_i

• Derive $[\alpha\beta]_t^i \leftarrow [\alpha\beta + r]_t^i - [r]_t^i$

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Comparison Circuit

- Suppose we compare α and β , and both are four-bit numbers
 - $\alpha \equiv \langle \alpha_3, \alpha_2, \alpha_1, \alpha_0 \rangle$
 - $\beta \equiv \langle \beta_3, \beta_2, \beta_1, \beta_0 \rangle$
- α_3 and β_3 indicate the most significant bits of α and β

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Comparison Circuit

① Compute the bitwise xor of α and β

- $a_3 = \alpha_3 \oplus \beta_3$
- $a_2 = \alpha_2 \oplus \beta_2$
- $a_1 = \alpha_1 \oplus \beta_1$
- $a_0 = \alpha_0 \oplus \beta_0$
- 2 Let *j* be the most significant bit location where $\alpha_j \neq \beta_j$, set $b_3 = 0, \dots, b_{j+1} = 0$ and $b_j = 1, \dots, b_0 = 1$

•
$$b_3 = a_3$$

• $b_2 = a_2 \lor b_3$
• $b_1 = a_1 \lor b_2$

•
$$b_0 = a_0 \vee b_1$$

CMP_SC 8001

Zero-Knowledge Proofs Computations over \mathbb{Z}_p Secret Sharing Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Comparison Circuit

Solution Let *j* be the most significant bit location where $\alpha_j \neq \beta_j$, set $c_j = 1$ and $c_i = 0$ where $i \neq j$

- $c_3 = b_3$
- $c_2 = b_2 \oplus b_3$
- $c_1 = b_1 \oplus b_2$
- $c_0 = b_0 \oplus b_1$

- $d_3 = c_3 \wedge \alpha_3$
- $d_2 = c_2 \wedge \alpha_3$
- $d_1 = c_1 \wedge \alpha_2$
- $d_0 = c_0 \wedge \alpha_1$

CMP_SC 8001

Zero-Knowledge Proofs Computations over \mathbb{Z}_p Secret Sharing

Secure Comparison

Comparison Circuit

Our prive the comparison result

•
$$e_2 = d_2 \vee d_3$$

•
$$e_1 = d_1 \vee e_2$$

•
$$e_0 = d_0 \vee e_1$$

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Comparison Circuit

Key Obervation

The comparison result is stored in e₀

- $e_0 = 1 \rightarrow \alpha > \beta$
- $e_0 = 0 \rightarrow \alpha \leq \beta$

Compute \oplus, \lor and \land in terms of -, + and \times

- $x \oplus y \equiv x + y 2xy$
- $x \lor y \equiv x + y xy$
- $x \wedge y \equiv xy$

Since we know how to compute -, + and \times securely, we can evaluate the comparison circuit securely

CMP_SC 8001

Additive Secret Sharing Shamir Secret Sharing Secure Comparison

Comparison Circuit

Secure Implementation of Step 1 of the Boolean Circuit

- $a_i = \alpha_i \oplus \beta_i$
- $a_i = \alpha_i + \beta_i 2\alpha_i\beta_i$

The main steps with inputs $[\alpha_i]$ and $[\beta_i]$

- $(\alpha_i \beta_i] \leftarrow \text{Secure}_\text{Multiplication}([\alpha_i], [\beta_i])$
- **2** $[2\alpha_i\beta_i] \leftarrow 2[\alpha_i\beta_i]$

CMP_SC 8001

Acknowledgment

- Adi Shamir, "How to share a secret", Communications of the ACM, 22:612 - 613, 1979
- Donald Beaver, "Efficient multiparty protocols using circuit randomization", In Advances in Cryptology - (CRYPTO 91), volume 576 of Lecture Notes in Computer Science, pages 420 -432, 1991
- Ivan Damgard and Jesper Buus Nielsen, "Robust multiparty computation with linear communication complexity", In Alfred Menezes, editor, Advances in Cryptology (CRYPTO 2007), Lecture Notes in Computer Science. Springer-Verlag, 2007

