CMP_SC 8001 - Introduction to Secure Multiparty Computation
 Fundamental MPC Protocols - Part 1

Wei Jiang

Department of Electrical Engineering and Computer Science
University of Missouri

Outline

(9) Zero-Knowledge Proofs

- Basic Properties
- Graph 3-Coloring
- Hamiltonian Cycle
(2) Computations over \mathbb{Z}_{p}
- The Greatest Common Divisor
- Group and Field
(3) Secret Sharing
- Additive Secret Sharing
- Shamir Secret Sharing
- Secure Comparison

Outline

(1) Zero-Knowledge Proofs

- Basic Properties
- Graph 3-Coloring
- Hamiltonian Cycle
(2) Computations over \mathbb{Z}_{p}
- The Greatest Common Divisor
- Group and Field
(3) Secret Sharing
- Additive Secret Sharing
- Shamir Secret Sharing
- Secure Comparison

Wei Jiang - http://faculty.missouri.edu/wjiang/

What is Zero-Knowledge (ZK) Proof

- Completeness: if the statement is true, a prover can convince an honest verifier that the statement is true
- Soundness: if the statement is false, a prover can convince an honest verifier to accept this fact with negligible probability
- Zero-knowledge: if the statement is true, no verifier can learn anything, except the fact that the statement is true

How to Show a Proof is ZK

- Similar to the read-ideal paradigm
- There exists a simulator for any verifier,
- given only the statement to be proved
- it can produce view indistinguishable from an interaction between the honest prover and the verifier

3-Colorable Graph

Definition

A graph $G=\langle V, E\rangle$ is 3-colorable if V can be colored with three different colors, such that for any two vertices v_{i} and v_{j} connected via an edge $e_{i j}$, $\operatorname{Color}\left(v_{i}\right) \neq \operatorname{Color}\left(v_{j}\right)$

Key Facts

- If G 3-colorable, permuting its three colors results another valid 3-coloring
- If G not 3-colorable, there exists at least a pair of adjacent vertices having the same color
- Graph 3-coloring is a NP-Complete problem

ZK-Proof for Graph 3-Coloring

- Public input:
- $G=\langle V, E\rangle$
- H : a secure commitment function
- Private input:
- Prover: w, a 3-coloring of G
- Verifier: \perp

ZK-Proof for Graph 3-Coloring

(1) Prover:

- randomly permute the 3 colors of w to produce w^{\prime}
- send $H\left(w^{\prime}\right)$ to the verifier, where

$$
H\left(w^{\prime}\right)=\left\{H\left(v_{i}, \operatorname{Color}\left(v_{i}\right)\right) \mid \forall i, v_{i} \in V\right\}
$$

(2) Verifier:

- randomly select $e_{i j} \in E$ (or $\left.(i, j) \in E\right)$
- send $e_{i j}$ or (i, j) to the prover
(3) Prover: send $\left\langle v_{i}, \operatorname{Color}\left(v_{i}\right)\right\rangle$ and $\left\langle v_{j}, \operatorname{Color}\left(v_{j}\right)\right\rangle$ to the verifier
(4) Verifier: if the commitments can be verified and $\operatorname{Color}\left(v_{i}\right) \neq \operatorname{Color}\left(v_{j}\right)$, return accept; otherwise, return reject

ZK-Proof for Graph 3-Coloring

- Completeness: if w is a valid 3-coloring of G, an honest verifier will always return accept
- Soundness:
- if w is not a valid 3 -coloring, the probability that an honest verifier returns accept is bounded by $\frac{|E|-1}{|E|}$ or $1-\frac{1}{|E|}$
- the above probability is also called soundness error

Making the Soundness Error Negligible

- The previous proof is not very sound:
- the accept probability or the soundness error $1-\frac{1}{|E|}$ is too high when w is not a valid 3 -coloring
- how to make the soundness error negligible?

Making the Soundness Error Negligible

- Run the above proof $n|E|$ times independently
- The verifier returns accept if all $n|E|$ executions returns accept
- Soundness error:

$$
\left(1-\frac{1}{|E|}\right)^{n|E|} \leq \frac{1}{e^{n}}
$$

using the following inequality: $(1+x)^{t} \leq e^{t x}$ for any real number x and t with $t>0$

Zero Knowledge

- To prove the previous proof is zero-knowledge, we need to build a simulator S
- Based on the public information, S generates a simulated view of the interaction between a prover (P) and a verifier (V)
- If the simulated view is computationally indistinguishable from the real interaction or execution of the proof, the proof is zero-knowledge when V is computationally bounded

Zero Knowledge - the Simulator

Simulator for graph 3-coloring
(1) S randomly chooses an edge $e_{i j} \in E$ and colors v_{i} and v_{j} with different colors, and colors the rest the same color to produce \hat{w}. Then S commits \hat{w}, denoted by $H(\hat{w})$
(2) S simulates V using $H(\hat{w})$, and receives $\left(i^{\prime}, j^{\prime}\right)$, the first message V sends

- If $(i, j)=\left(i^{\prime}, j^{\prime}\right)$, then S can honestly answer the query and simulate the rest of the protocol, and outputs the transcript:

$$
\text { Views }=\left\{H(\hat{w}),\left\langle v_{i}, \operatorname{Color}\left(v_{i}\right)\right\rangle,\left\langle v_{j}, \text { Color }\left(v_{j}\right)\right\rangle, \text { accept }\right\}
$$

- If $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$, then S restarts from the beginning with a newly chosen (i, j)

Zero Knowledge - the Simulator

- Note that $\operatorname{Prob}\left((i, j)=\left(i^{\prime}, j^{\prime}\right)\right) \approx \frac{1}{|E|}$, since the selection of $\left(i^{\prime}, j^{\prime}\right)$ is only based on the commitments, which cannot bias the decision due to the hiding property
- Thus, S succeeds with probability about $1 /|E|$, and the expected number of iterations to terminate is $|E|$

Zero Knowledge - Real vs Ideal (Simula

- View $_{\pi}=\left\{H\left(w^{\prime}\right),\left\langle\boldsymbol{v}_{i}, \operatorname{Color}\left(v_{i}\right)\right\rangle,\left\langle v_{j}, \operatorname{Color}\left(v_{j}\right)\right\rangle\right.$, accept $\}$
- Views $=\left\{H(\hat{w}),\left\langle\boldsymbol{v}_{i}, \operatorname{Color}\left(\boldsymbol{v}_{i}\right)^{*}\right\rangle,\left\langle\boldsymbol{v}_{j}, \operatorname{Color}\left(v_{j}\right)^{*}\right\rangle\right.$, accept $\}$
- View ${ }_{\pi}$ and Views are computationally indistinguishable:
- $H\left(w^{\prime}\right)$ and $H(\hat{w})$ are computationally indistinguishable due to the hiding property of H
- $\left\langle\operatorname{Color}\left(v_{i}\right), \operatorname{Color}\left(v_{j}\right)\right\rangle$, and $\left\langle\operatorname{Color}\left(v_{i}\right)^{*}, \operatorname{Color}\left(v_{j}\right)^{*}\right\rangle$ are identically distributed since the colors are randomly permuted for each execution of the proof

Hamiltonian Cycle

- Given a graph $G=\langle V, E\rangle$, a Hamiltonian cycle includes every vertex $v_{i} \in V$ exactly once
- The problem of finding a Hamiltonian cycle in G is known to be NP-Complete

ZK-Proof for Hamiltonian Cycle

- Public information: G is known to both Alice and Bob
- Private inputs:
- Alice: $C \subseteq E$ a Hamiltonian cycle in G
- Bob: \perp
- ZK-proof: Alice proves to Bob that she knows C without disclosing any information about it to Bob

ZK-Proof for Hamiltonian Cycle

(1) Alice chooses a random permutation (on the vertices of G): $\pi(G) \rightarrow G^{\prime}$, and sends $H\left(G^{\prime}\right)$ and $H(\pi)$, the commitments of G and π, to Bob
(2) Bob randomly chooses $b \in\{0,1\}$, and sends it to Alice
(3) Alice performs the following, based on the challenge b :

- $b=0$: open G^{\prime} and π
- $b=1$: compute $C^{\prime} \leftarrow \pi(C)$ and open only the commitments related to C^{\prime}
(4) Bob returns accept if either verification below succeeds:
- $b=0$: verify the commitments and check if $G^{\prime}=\pi(G)$
- $b=1$: verify the commitments related to C^{\prime} and check if C^{\prime} is a Hamiltonian cycle

Completeness

- If Alice does know a Hamiltonian cycle in G, she can easily satisfy Bob's either challenge:
- the graph isomorphic mapping π producing G^{\prime} from G, or
- a Hamiltonian cycle C^{\prime} in G^{\prime} produced based on π

Soundness

- If Alice does not know C, she can guess which question Bob will ask to generate either
- a graph isomorphic to G, or
- a Hamiltonian cycle for an unrelated graph
- However, since she does not know a Hamiltonian cycle for G, she cannot do both
- Soundness error: $\frac{1}{2}$
- Similar to graph 3-coloring, the soundness error can be reduced to $\frac{1}{2^{n}}$ by executing the proof n times

Soundness

- Conversely, if Alice has prior knowledge about the challenge bit b, she can fool Bob without knowing a valid C
- If Alice knew $b=0$, she would commit to an arbitrary permutation $\pi(G)$ and still pass the challenge
- If Alice knew $b=1$, she would commit to a complete graph with $|G|$ vertices not a permutation of G, and she would then reveal any arbitrary Hamiltonian cycle on the complete graph to Bob

Zero Knowledge

- Alice's answers do not reveal the original Hamiltonian cycle C
- Each round, Bob only learns G^{\prime} is isomorphic to G or a Hamiltonian cycle in G^{\prime}
- He would need both answers for a single G^{\prime} to discover the cycle C in G
- Thus, C remains unknown as long as Alice can generate a distinct G^{\prime} every round

Zero Knowledge

- Prove there exists a probabilistic-polynomial time (PPT) simulator S for every PPT malicious verifier V^{*} such that
- the output distribution of the interaction between S and each V^{*} is computationally indistinguishable from that of the interaction between each V^{*} and an honest prover P
- S predicts the challenge bit b^{\prime} and commits either to a valid graph permutation or the complete graph with $|G|$ vertices with a trivial Hamiltonian cycle
- If the predicted challenge bit matches the actual challenge bit $b^{\prime}=b$, then S proceeds by successfully responding to the challenge; otherwise, S rewinds the transcript and tries again

Simulator Complexity

- The probability of guessing b^{\prime} correctly is $\frac{1}{2}$
- Thus, the expected number of iterations is 2
- In other words, the simulator runs in expected polynomial time

Outline

(1) Zero-Knowledge Proofs

- Basic Properties
- Graph 3-Coloring
- Hamiltonian Cycle
(2) Computations over \mathbb{Z}_{p}
- The Greatest Common Divisor
- Group and Field
(3) Secret Sharing
- Additive Secret Sharing
- Shamir Secret Sharing
- Secure Comparison

Wei Jiang - http://faculty.missouri.edu/wjiang/

Division Theorem

Theorem (Division Algorithm)

If a and b are integers such that $b>0$, then there are unique integers q and r such that $a=b q+r$, where $0 \leq r<b$

Linear Combination

Definition (Linear Combination)

If a and b are integers, then a linear combination of a and b is a sum of the form $a x+b y$, where both x and y are integers

Example

- What are the linear combinations of $9 x+15 y$?
- $-3=9 \cdot(-2)+15 \cdot 1$
- $0=9 \cdot 0+15 \cdot 0$
- $3=9 \cdot 2+15 \cdot(-1)$
- It can be shown that the set of all linear combinations of 9 and 15 is $\{\ldots,-12,-9,-6,-3,0,3,6,9,12, \ldots\}$

The Greatest Common Divisor

Definition (Greatest Common Divisor)

The greatest common divisor (gcd) of two integers a and b, not both zero, is the largest of the common divisors of a and b

Theorem (GCD as a Linear Combination)

The greatest common divisor of the integers a and b, not both 0 , is the least positive integer that is a linear combination of a and b

Some Facts related to GCD and Divisibil

- Fact 1: $d \mid a$ and $d|b \Longrightarrow d|(a m+b n)$
- Fact 2: $d \mid a$ and $d|b \Longrightarrow d| \operatorname{gcd}(a, b)$
- Fact 3: $\operatorname{gcd}(0,0)=0$ and $\operatorname{gcd}(a, 0)=|a|$

The Euclidean Algorithm

Theorem

For any non-negative integer a and any positive integer b, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

```
Algorithm 1 Euclid(a,b)
Require: }a\mathrm{ and }b\mathrm{ are non-negative integers
    1: if b=0 then
    2: return a
    3: else
    4: return Euclid(b,a mod b)
    5: end if
```


Find the gcd of 30 and 72

- First we use the division theorem to write:

$$
72=2 \cdot 30+12
$$

- The Euclidean theorem tells us that

$$
\begin{aligned}
\operatorname{gcd}(72,30) & =\operatorname{gcd}(30,72 \bmod 30)=\operatorname{gcd}(30,12) \\
30 & =2 \cdot 12+6 \\
\operatorname{gcd}(30,12) & =\operatorname{gcd}(12,30 \bmod 12)=\operatorname{gcd}(12,6) \\
12 & =2 \cdot 6+0 \\
\operatorname{gcd}(12,6) & =\operatorname{gcd}(6,12 \bmod 6)=\operatorname{gcd}(6,0)=6
\end{aligned}
$$

- $\operatorname{gcd}(72,30)=6$

The Extended Euclidean

Find the GCD of 801 and 154

$$
\begin{align*}
801 & =5 \cdot 154+31 \tag{1}\\
154 & =4 \cdot 31+30 \tag{2}\\
31 & =1 \cdot 30+1 \tag{3}\\
30 & =30 \cdot 1+0 \tag{4}\\
1 & =1 \cdot 1+0 \tag{5}
\end{align*}
$$

- $\operatorname{gcd}(801,154)=\operatorname{gcd}(1,0)=1$

The Extended Euclidean

Find the linear combination of $\operatorname{gcd}(801,154)=801 \cdot x+154 \cdot y$

- Starting with the GCD based Equation (5):

$$
1=1 \cdot 1+0 \cdot 0 \quad(g=1, x=1, y=0)
$$

- Replace 0 in the above according to Equation (4):

$$
1=30 \cdot 0+1 \cdot 1 \quad(g=1, x=0, y=1)
$$

- Replace 1 in the above according to Equation (3):

$$
1=31 \cdot 1+30 \cdot(-1) \quad(g=1, x=1, y=-1)
$$

- Replace 30 in the above according to Equation (2):

$$
1=154 \cdot(-1)+31 \cdot 5 \quad(g=1, x=-1, y=5)
$$

- Replace 31 in the above according to Equation (1):

$$
1=801 \cdot 5+154 \cdot(-26) \quad(g=1, x=5, y=-26)
$$

The Extended Euclidean

- The algorithm terminates with $b=0$ and $a=g$; thus, from these parameters, the linear combination for g is $g=g \cdot 1+0 \cdot 0$
- Starting from these coefficients $(x, y)=(1,0)$, we can go backwards up the recursive calls
- We need to figure out how the coefficients x and y change during the transition from (a, b) to $(b, a \bmod b)$

The Extended Euclidean

- Assuming we found the coefficients $\left(x^{\prime}, y^{\prime}\right)$ for $(b, a \bmod b)$

$$
g=b \cdot x^{\prime}+(a \bmod b) \cdot y^{\prime}
$$

- We want to find the pair (x, y) for (a, b) :

$$
g=a \cdot x+b \cdot y
$$

- We can represent $a \bmod b$ as:

$$
a \bmod b=a-\left\lfloor\frac{a}{b}\right\rfloor \cdot b
$$

- Replacing this in the coefficient equation for $\left(x^{\prime}, y^{\prime}\right)$ gives:

$$
g=b \cdot x^{\prime}+(a \bmod b) \cdot y^{\prime}=b \cdot x^{\prime}+\left(a-\left\lfloor\frac{a}{b}\right\rfloor \cdot b\right) \cdot y^{\prime}
$$

The Extended Euclidean

- After rearranging and combining the terms, we have:

$$
g=a \cdot y^{\prime}+b \cdot\left(x^{\prime}-y^{\prime} \cdot\left\lfloor\frac{a}{b}\right\rfloor\right)
$$

- As a result, the values of x and y are:

$$
\begin{aligned}
& x=y^{\prime} \\
& y=x^{\prime}-y^{\prime} \cdot\left\lfloor\frac{a}{b}\right\rfloor
\end{aligned}
$$

The Extended Euclidean

Algorithm 2 Extended_Euclid(a, b)

Require: a and b are non-negative integers
1: if $b=0$ then
2: return $(a, 1,0)$
3: else
4: $\quad\left(g^{\prime}, x^{\prime}, y^{\prime}\right)=$ Extended_Euclid $(b, a \bmod b)$
5: $\quad(g, x, y)=\left(g^{\prime}, y^{\prime}, x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right)$
6: return (g, x, y)
7: end if

Group Definition

A set of objects G along with a binary operation (\bullet) is called a group if the following four properties hold:

- Closure: If $a, b \in G$, then $c=a \bullet b \in G$
- Associativity: $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity element: There exists a unique element e in G, such that for every $a \in G$, we have $a \bullet e=e \bullet a=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b=e$ A group is commutative or abelian if for any two elements $a, b \in G$, we have $a \bullet b=b \bullet a$

Group Examples

- Integers \mathbb{Z} is a group under addition (+), and real numbers \mathbb{R} with either addition $(+)$ or multiplication (\times) operation is a group
- $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ with addition modulo $n(+, \bmod n)$ is a group where n is a positive integer:
- $a, b \in \mathbb{Z}_{n}$, then $c=a+b \bmod n$ is also in \mathbb{Z}_{n}
- The identity element is 0 , and the inverse of a is $n-a$
- $7,15 \in \mathbb{Z}_{16}$, then $7+15 \bmod 16=6$

Group Examples

- $\mathbb{Z}_{p}^{+}=\{1, \ldots, p-1\}$ with multiplication modulo $p(\times, \bmod p)$ is a group where p is a prime:
- $a, b \in \mathbb{Z}_{p}^{+}$, then $c=a \times b \bmod p$ is also in \mathbb{Z}_{p}^{+}
- The identity element is 1
- Given $a \in \mathbb{Z}_{p}^{+}$, find the inverse of a (denoted by a^{-1}):
- $\operatorname{gcd}(a, p)=a \cdot x+p \cdot y$
- $a^{-1}=x \bmod p$

Ring and Field

Definition (Ring)

A ring is a set of elements with two binary operations, addition (+) and multiplication (\times):

- It is an abelian group with identify element 0 under addition
- Its multiplication is associative $a \times(b \times c)=(a \times b) \times c$ and distributive over addition $a \times(b+c)=a \times b+a \times c$ and $(b+c) \times a=b \times a+c \times a$
A ring is commutative if $a \times b=b \times a$ for every a and b

Ring and Field

Definition (Field)

A ring is called a field if its elements, except for 0 , form a commutative group under \times

- $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$ with $(+, \bmod p)$ and $(\times, \bmod p)$ is a field where p is a prime:
- The identity element is 0 under $(+, \bmod p)$
- The identity element is 1 under $(\times, \bmod p)$

Outline

(1) Zero-Knowledge Proofs

- Basic Properties
- Graph 3-Coloring
- Hamiltonian Cycle
(2) Computations over \mathbb{Z}_{p}
- The Greatest Common Divisor
- Group and Field
(3) Secret Sharing
- Additive Secret Sharing
- Shamir Secret Sharing
- Secure Comparison

Wei Jiang - http://faculty.missouri.edu/wjiang/

Common Notations

- $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$
- P_{i} : a participating party indexed by $i \in\{1, \ldots, m\}$
- $[v]=\left\{[v]^{1}, \ldots,[v]^{m}\right\}$: a value $v \in \mathbb{Z}_{n}$ is secretly shared among the parties where $[v]^{i}(1 \leq i \leq m)$ is the share held by P_{i}
- $[v]_{t}=\left\{[v]_{t}^{1}, \ldots,[v]_{t}^{m}\right\}$: a value v is secretly shared using a t-degree polynomial over a finite field among the parties

Secret Sharing in \mathbb{Z}_{n}

- Suppose there are two parties P_{1} and P_{2}, and each has a private value α and β in \mathbb{Z}_{n} respectively
- To secretly share $\alpha \in \mathbb{Z}_{n}$ between P_{1} and P_{2}, P_{1} performs the following steps:
- randomly select r from \mathbb{Z}_{n}
- set $[\alpha]^{1}=r$ and $[\alpha]^{2}=\alpha-r \bmod n$
- send $[\alpha]^{2}$ to P_{2}
- β can be secretly shared similarly by P_{2}

Secure Addition $[\alpha+\beta]$

- To derive $[\alpha+\beta]$, each party adds its local shares; that is,
- $P_{1}:[\alpha+\beta]^{1} \leftarrow[\alpha]^{1}+[\beta]^{1} \bmod n$
- $P_{2}:[\alpha+\beta]^{2} \leftarrow[\alpha]^{2}+[\beta]^{2} \bmod n$
- We will omit the $\bmod n$ operation where the context is clear

Secure Multiplication between [α] and a Result [$c \cdot \alpha$]

- $c \in \mathbb{Z}_{n}$ (or in \mathbb{Z}_{p}) is known to both parties
- To derive $[c \cdot \alpha]$, each party multiplies its local shares of α with c :
- $P_{1}:[c \cdot \alpha]^{1} \leftarrow c \cdot[\alpha]^{1}$
- $P_{2}:[c \cdot \alpha]^{2} \leftarrow c \cdot[\alpha]^{2}$

Secure Multiplication $[\alpha \beta]$

- Suppose $\chi=\alpha+\boldsymbol{u}$ and $\gamma=\beta+\boldsymbol{v}$, and we have

$$
\chi \gamma=\alpha \beta+v \alpha+u \beta+u v
$$

- It is easy to see that

$$
\alpha \beta=\chi \gamma-\chi v-\gamma u+u v
$$

- We perform multiplication of $\alpha \beta$ based on χ, γ, u and v

Secure Multiplication $[\alpha \beta]$

- To compute $[\alpha \beta$], we follow the relation below:

$$
\begin{array}{rlr}
{[\alpha \beta]^{1}} & = & \chi \gamma-\chi[v]^{1}-\gamma[u]^{1}+[u v]^{1} \\
{[\alpha \beta]^{2}} & = & -\chi[v]^{2}-\gamma[u]^{2}+[u v]^{2}
\end{array}
$$

- This implies that if both P_{1} and P_{2} know $\chi, \gamma,[u],[v]$ and $[u v]$, then they can derive $[\alpha \beta]$
- $\langle[u],[v],[u v]\rangle$ is called a Beaver triple

Secure Multiplication $[\alpha \beta]$

- To compute $[\alpha \beta]$, we need an additional party P_{3}
- The purpose of using P_{3} is to generate the Beaver triple $\langle[u],[v],[u v]\rangle$ shared between P_{1} and P_{2}
- From [u] and [v], P_{1} and P_{2} can collaboratively derive χ and γ
- Then $[\alpha \beta]$ can be easily derived by both parties as shown earlier

Secure Multiplication $[\alpha \beta]$

- Input: $\left\langle P_{1},[\alpha]^{1},[\beta]^{1}\right\rangle,\left\langle P_{2},[\alpha]^{2},[\beta]^{2}\right\rangle,\left\langle P_{3}, \perp\right\rangle$
- Output: $\left\langle P_{1},[\alpha \beta]^{1}\right\rangle,\left\langle P_{2},[\alpha \beta]^{2}\right\rangle$
- Domain: \mathbb{Z}_{p}

Secure Multiplication $[\alpha \beta]$ based on Bea

(1) $P_{3} / /$ generate Beaver triples and send shares to P_{1} and P_{2}
(a) randomly choose u and v from \mathbb{Z}_{p} and generate the shares $\left([u]^{1},[u]^{2}\right),\left([v]^{1},[v]^{2}\right)$ and $\left([u v]^{1},[u v]^{2}\right)$
(D) send $[u]^{1},[v]^{1},[u v]^{1}$ to P_{1} and $[u]^{2},[v]^{2},[u v]^{2}$ to P_{2}
(2) $P_{1} / /$ generate P_{1} 's shares of $[\chi]$ and $[\gamma]$ and send them to P_{2}
(a) $[\chi]^{1} \leftarrow[\alpha]^{1}+[u]^{1}$ and $[\gamma]^{1} \leftarrow[\beta]^{1}+[v]^{1}$
(D) send $[\chi]^{1}$ and $[\gamma]^{1}$ to P_{2}
(3) $P_{2} / /$ generate P_{2} 's shares of $[\chi]$ and $[\gamma]$ and send them to P_{1}
(a) $[\chi]^{2} \leftarrow[\alpha]^{2}+[u]^{2}$ and $[\gamma]^{2} \leftarrow[\beta]^{2}+[v]^{2}$
(D) send $[\chi]^{2}$ and $[\gamma]^{2}$ to P_{1}

Secure Multiplication $[\alpha \beta]$ based on Bea

(4) $P_{1} / /$ reconstruct χ and γ and derive P_{1} 's share of $[\alpha \beta]$
(a) $\chi \leftarrow[\chi]^{1}+[\chi]^{2}$ and $\gamma \leftarrow[\gamma]^{1}+[\gamma]^{2}$
(D) $[\alpha \beta]^{1} \leftarrow \chi \gamma-\chi[v]^{1}-\gamma[u]^{1}+[u v]^{1}$
(5) $P_{2} / /$ reconstruct χ and γ and derive P_{2} 's share of $[\alpha \beta]$
(a) $\chi \leftarrow[\chi]^{1}+[\chi]^{2}$ and $\gamma \leftarrow[\gamma]^{1}+[\gamma]^{2}$
(D) $[\alpha \beta]^{2} \leftarrow-\chi[v]^{2}-\gamma[u]^{2}+[u v]^{2}$

Important Properties for Polynomial

Two fundamental properties of polynomial
(1) A non-zero polynomial of degree t has at most t roots
(2) Given $t+1$ pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{t+1}, y_{t+1}\right)$, with all the x_{i} distinct, there is a unique polynomial $\theta(x)$ of degree (at most) t such that $\theta\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq t+1$

Lagrange Interpolation

- Given $t+1$ pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{t+1}, y_{t+1}\right)$, with all the x_{i} distinct, construct a polynomial $\theta(x)$ such that $\theta\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq t+1$
- Let consider a simpler problem first:
- Suppose $y_{1}=1$ and $y_{i}=0$ for $2 \leq i \leq t+1$, what is $\theta(x)$?

Lagrange Interpolation

- Let $q(x)=\left(x-x_{2}\right)\left(x-x_{3}\right) \cdots\left(x-x_{t+1}\right)$: a polynomial of degree t (the x_{i} 's are constants, and x appears t times)
- We have $q\left(x_{i}\right)=0$, for $2 \leq i \leq t+1$
- $q\left(x_{1}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \cdots\left(x_{1}-x_{t+1}\right)$, which is some constant not equal to 0
- Thus, we have $\theta(x)=q(x) / q\left(x_{1}\right)$

Lagrange Interpolation

- Let generalize the previous problem to any arbitrary index i : $y_{i}=1$ and $y_{j}=0$ for all $j \neq i$
- Define $\delta_{i}(x)$ the degree t polynomial that goes through these $t+1$ points:

$$
\delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\Pi_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

- It is easy to verify that

$$
\begin{aligned}
y_{i} & =\delta_{i}\left(x_{i}\right)=1 \\
y_{j} & =\delta_{i}\left(x_{j}\right)=0, \forall j \neq i
\end{aligned}
$$

Lagrange Interpolation

Given $t+1$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{t+1}, y_{t+1}\right)$ where x_{i} 's are distinct, find a t-degree polynomial $\theta(x)$ going through these points:
(1) Construct the $t+1$ polynomials: $\delta_{1}(x), \ldots, \delta_{t+1}(x)$
(2) $\theta(x)=\sum_{i=1}^{t+1} y_{i} \delta_{i}(x)$

Polynomial over a Finite Field

- Suppose the finite field is \mathbb{Z}_{p}
- The coefficients of $\theta(x)$ and all operations (e.g., addition, multiplication) are in \mathbb{Z}_{p}
- The two important properties of polynomial still hold as well as the Lagrange Interpolation:
$\delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\Pi_{j \neq i}\left(x_{i}-x_{j}\right)} \Rightarrow \delta_{i}(x)=\Pi_{j \neq i}\left(x-x_{j}\right)\left(\Pi_{j \neq i}\left(x_{i}-x_{j}\right)\right)^{-1} \bmod p$
where $\left(\Pi_{j \neq i}\left(x_{i}-x_{j}\right)\right)^{-1}$ is the multiplicative inverse of $\Pi_{j \neq i}\left(x_{i}-x_{j}\right)$ in \mathbb{Z}_{p}

Shamir Secret Sharing

- When discussing additive secret sharing, we assumed each party has a private value and wants to secretly share it with the other party
- There are many variations of how a value is secretly shared among the participating parties
- Here we use another variation to illustrate the Shamir secret sharing scheme

Shamir Secret Sharing

- Suppose there is a dealer who wants to secretly share α and β among m parties P_{1}, \ldots, P_{m}
- In practice, the dealer could be one of the parties and secretly shares its private input for the subsequent MPC

Shamir Secret Sharing

- The dealer randomly generates two t-degree polynomials in \mathbb{Z}_{p} :
- $\theta_{\alpha}(x)=a_{t} x^{t}+a_{t-1} x^{t-1}+\cdots+a_{1} x+\alpha \bmod p$
- $\theta_{\beta}(x)=b_{t} x^{t}+b_{t-1} x^{t-1}+\cdots+b_{1} x+\beta \bmod p$
- Note that $\theta_{\alpha}(0)=\alpha$ and $\theta_{\beta}(0)=\beta$
- To generate the shares of α and β, the dealer does the following:
- $[\alpha]_{t}^{i}=\theta_{\alpha}(i) \bmod p$, for $1 \leq i \leq m$
- $[\beta]_{t}^{i}=\theta_{\beta}(i) \bmod p$, for $1 \leq i \leq m$
- We will omit the $\bmod p$ operation where the context is clear
- The dealer sends $[\alpha]_{t}^{i}$ and $[\beta]_{t}^{i}$ to P_{i}

Share Reconstruction

- To discover the original values α and β, at least $t+1$ parties need to pool their shares together
- Suppose $P_{j_{1}}, \ldots, P_{j_{t+1}}$ are $t+1$ parties with shares $[\alpha]_{t}^{j_{1}}, \ldots,[\alpha]_{t}^{j_{t+1}}$ where $j_{1}, \ldots, j_{t+1} \subset\{1, \ldots, m\}$ and $t<\frac{m}{2}$
- These parties can share their shares, and each can local reconstruct the polynomial $\theta_{\alpha}(x)$ using Lagrange interpolation on the $t+1$ points: $\left(j_{1},[\alpha]_{t}^{j_{t}}\right), \ldots,\left(j_{t+1},[\alpha]_{t}^{j_{t+1}}\right)$
- Then compute $\theta_{\alpha}(0)$ to retrieve α, and β can be derived similarly

Secure Addition $[\alpha+\beta]_{t}$

- To derive $[\alpha+\beta]_{t}$, each party adds its local shares; that is,

$$
P_{i}:[\alpha+\beta]_{t}^{i} \leftarrow[\alpha]_{t}^{i}+[\beta]_{t}^{i}
$$

- This works because adding the two local points (on the y-coordinates) giving a point $\left(i,[\alpha+\beta]^{i}\right)$ on $\theta_{\alpha+\beta}(x)$:

$$
\begin{aligned}
\theta_{\alpha+\beta}(x) & =\theta_{\alpha}(x)+\theta_{\beta}(x) \\
& =\left(a_{t}+b_{t}\right) x^{t}+\cdots+\left(a_{1}+b_{1}\right) x+(\alpha+\beta)
\end{aligned}
$$

- As discussed previously, the parties need to have at least $t+1$ points $\left(j_{1},[\alpha+\beta]_{t}^{j_{1}}\right), \ldots,\left(j_{t+1},[\alpha+\beta]_{t}^{j_{t+1}}\right)$ to reconstruct $\theta_{\alpha+\beta}(x)$
- To retrieve $\alpha+\beta$, set $\theta_{\alpha+\beta}(0)=\alpha+\beta$

Secure Multiplication between $[\alpha]_{t}$ and Result $[c \cdot \alpha]_{t}$

- $c \in \mathbb{Z}_{n}$ (or in \mathbb{Z}_{p}) is known to all parties
- To derive $[c \cdot \alpha]_{t}, P_{i}$ multiplies its local shares of α with c :
- $P_{i}:[c \cdot \alpha]_{t}^{j} \leftarrow c \cdot[\alpha]_{t}^{i}$
- This works because multiplying the local point (on the y-coordinates) with c giving a point $\left(i,[c \cdot \alpha]_{t}^{i}\right)$ on $\theta_{c \cdot \alpha}(x)$:

$$
\begin{aligned}
\theta_{c \cdot \alpha}(x) & =c \cdot \theta_{\alpha}(x) \\
& =\left(c \cdot a_{t}\right) x^{t}+\cdots+\left(c \cdot a_{1}\right) x+(c \cdot \alpha)
\end{aligned}
$$

Secure Multiplication $[\alpha \beta]_{t}$

- If the parties need to perform this multiplication once, then they can just simply multiple their local shares to produce a valid point $\left(i,[\alpha \beta]_{t}^{i}\right)$ on $\theta_{\alpha \beta}^{\prime}(x)$
- Since $\theta_{\alpha \beta}^{\prime}(x)$ has a degree of $2 t$ and $t<\frac{m}{2}$, we cannot use these shares to perform additional secure multiplications
- Otherwise, the original values cannot be retrieved due to the degree of the polynomials (resulting from these additional secure multiplications) would be equal to or greater than m
- Key challenge: after each multiplication, transform $\theta_{\alpha \beta}^{\prime}(x)$ a $2 t$-degree polynomial to $\theta_{\alpha \beta}(x)$ a t-degree polynomial

Secure Multiplication $[\alpha \beta]_{t}$

- To compute $[\alpha \beta]_{t}$ and solve the previously mentioned technical challenge, there are several protocols
- In what follows, we present an efficient protocol (based on DN07) under the semi-honest adversary model

Secure Multiplication $[\alpha \beta]_{t}$ - Main Steps

(1) Each party locally multiplies its shares resulting a point on $\theta_{\alpha \beta}^{\prime}(x)$, and obliviously randomizes it using $[r]_{2 t}$ to produce a point on $\theta_{\alpha \beta+r}^{\prime}(x)$

- r is a random value in \mathbb{Z}_{p}, not known to the parties
(2) Then each party sends its randomized point (on $\theta_{\alpha \beta+r}^{\prime}(x)$) to a designated party, say P_{1}
(3) P_{1} performs Lagrange interpolation on $2 t+1$ points to retrieve $\alpha \beta+r$ and sends it to the other parties
(4) Each party subtracts the randomness to obtain a point on $\theta_{\alpha \beta}(x)$

Secure Multiplication $[x y]_{t}$ - DN07

- Input: $\left\langle P_{i},[\alpha]_{t}^{i},[\beta]_{t}^{i}\right\rangle$, for $1 \leq i \leq m$
- Output: $\left\langle P_{i},[\alpha \beta]_{t}^{i}\right\rangle$, for $1 \leq i \leq m$
- Domain: \mathbb{Z}_{p} and $1 \leq t<\frac{m}{2}$

Secure Multiplication $[x y]_{t}-$ DN07

(1) P_{i}, for $1 \leq i \leq m$:

- Randomly generate r_{i} from \mathbb{Z}_{p} and use Shamir secret sharing to secretly share r_{i} with a random $2 t$-degree polynomial and a random t-degree polynomial
- At the end of the previous step, the party has $\left[r_{1}\right]_{2 t}^{i}, \ldots,\left[r_{m}\right]_{2 t}^{i}$ and $\left.\left[r_{1}\right]_{t}^{i}, \ldots,\left[r_{m}\right]_{t}^{i}\right)$
- Derive $[r]_{2 t}^{i} \leftarrow\left[r_{1}\right]_{2 t}^{i}+\cdots+\left[r_{m}\right]_{2 t}^{i}$ and $[r]_{t}^{i} \leftarrow\left[r_{1}\right]_{t}^{i}+\cdots+\left[r_{m}\right]_{t}^{i}$
- Derive $\left.[\alpha \beta+r]_{2 t}^{i} \leftarrow[\alpha]_{t}^{i} \beta \beta\right]_{t}^{i}+[r]_{2 t}^{i}$ and send it to P_{1}

Secure Multiplication $[x y]_{t}-$ DN07

(2) P_{1} :

- Reconstruct $\theta_{\alpha \beta+r}^{\prime}(x)$ based on $2 t+1$ pairs of $\left(i,[\alpha \beta+r]_{2 t}^{i}\right)$
- Derive $\alpha \beta+r \leftarrow \theta_{\alpha \beta+r}^{\prime}(0)$ and generate a random t-degree polynomial $\theta_{\alpha \beta+r}$ to secretly share $\alpha \beta+r$
- Send $[\alpha \beta+r]_{t}^{i}$ to P_{i}
(3) P_{i}, for $1 \leq i \leq m$:
- Derive $[\alpha \beta]_{t}^{i} \leftarrow[\alpha \beta+r]_{t}^{i}-[r]_{t}^{i}$

Comparison Circuit

- Suppose we compare α and β, and both are four-bit numbers
- $\alpha \equiv\left\langle\alpha_{3}, \alpha_{2}, \alpha_{1}, \alpha_{0}\right\rangle$
- $\beta \equiv\left\langle\beta_{3}, \beta_{2}, \beta_{1}, \beta_{0}\right\rangle$
- α_{3} and β_{3} indicate the most significant bits of α and β

Comparison Circuit

(1) Compute the bitwise xor of α and β

- $a_{3}=\alpha_{3} \oplus \beta_{3}$
- $a_{2}=\alpha_{2} \oplus \beta_{2}$
- $a_{1}=\alpha_{1} \oplus \beta_{1}$
- $a_{0}=\alpha_{0} \oplus \beta_{0}$
(2) Let j be the most significant bit location where $\alpha_{j} \neq \beta_{j}$, set $b_{3}=0, \ldots, b_{j+1}=0$ and $b_{j}=1, \ldots, b_{0}=1$
- $b_{3}=a_{3}$
- $b_{2}=a_{2} \vee b_{3}$
- $b_{1}=a_{1} \vee b_{2}$
- $b_{0}=a_{0} \vee b_{1}$

Comparison Circuit

(3) Let j be the most significant bit location where $\alpha_{j} \neq \beta_{j}$, set $c_{j}=1$ and $c_{i}=0$ where $i \neq j$

- $c_{3}=b_{3}$
- $c_{2}=b_{2} \oplus b_{3}$
- $c_{1}=b_{1} \oplus b_{2}$
- $c_{0}=b_{0} \oplus b_{1}$
(4) Multiple c and α bitwise
- $d_{3}=c_{3} \wedge \alpha_{3}$
- $d_{2}=c_{2} \wedge \alpha_{3}$
- $d_{1}=c_{1} \wedge \alpha_{2}$
- $d_{0}=c_{0} \wedge \alpha_{1}$

Comparison Circuit

(5) Derive the comparison result

- $e_{2}=d_{2} \vee d_{3}$
- $e_{1}=d_{1} \vee e_{2}$
- $e_{0}=d_{0} \vee e_{1}$

Comparison Circuit

Key Obervation

The comparison result is stored in e_{0}

- $e_{0}=1 \rightarrow \alpha>\beta$
- $e_{0}=0 \rightarrow \alpha \leq \beta$

Compute \oplus, \vee and \wedge in terms of,-+ and \times

- $x \oplus y \equiv x+y-2 x y$
- $x \vee y \equiv x+y-x y$
- $x \wedge y \equiv x y$

Since we know how to compute,-+ and \times securely, we can evaluate the comparison circuit securely

Comparison Circuit

Secure Implementation of Step 1 of the Boolean Circuit

- $a_{i}=\alpha_{i} \oplus \beta_{i}$
- $a_{i}=\alpha_{i}+\beta_{i}-2 \alpha_{i} \beta_{i}$

The main steps with inputs $\left[\alpha_{i}\right]$ and $\left[\beta_{i}\right]$
(1) $\left[\alpha_{i} \beta_{i}\right] \leftarrow$ Secure_Multiplication $\left(\left[\alpha_{i}\right],\left[\beta_{i}\right]\right)$
(2) $\left[2 \alpha_{i} \beta_{i}\right] \leftarrow 2\left[\alpha_{i} \beta_{i}\right]$
(3) $\left[a_{i}\right] \leftarrow\left[\alpha_{i}\right]+\left[\beta_{i}\right]-\left[2 \alpha_{i} \beta_{i}\right]$

Acknowledgment

- Adi Shamir, "How to share a secret", Communications of the ACM, 22:612-613, 1979
- Donald Beaver, "Efficient multiparty protocols using circuit randomization", In Advances in Cryptology - (CRYPTO 91), volume 576 of Lecture Notes in Computer Science, pages 420 432, 1991
- Ivan Damgard and Jesper Buus Nielsen, "Robust multiparty computation with linear communication complexity", In Alfred Menezes, editor, Advances in Cryptology (CRYPTO 2007), Lecture Notes in Computer Science. Springer-Verlag, 2007

