CMP_SC 8001 - Introduction to Secure
Multiparty Computation
Fundamental MPC Protocols - Part 3

Wei Jiang

Department of Electrical Engineering and Computer Science
University of Missouri

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

o Constant-Round MPC
@ Protocol Overview
@ GC Generation Circuit
@ The BMR Protocol

e Oblivious Transfer
@ Public Key-based OT
@ 1-out-on-N OT
@ Efficient OT Extension

e Private Set Intersection
@ Oblivious PRF
@ Cuckoo Hashing
@ PSI from OPRF

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ConStant-Round MPC _
Outline

o Constant-Round MPC
@ Protocol Overview
@ GC Generation Circuit
@ The BMR Protocol

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Beaver-Micali-Rogaw.

@ After Yao's (two-party) GC protocol was proposed, several SMC
protocols appeared

e Goldreich-Micali-Wigderson (GMW) (Goldreich, 2004;
Goldreich et al., 1987)

e Ben-Goldwasser-Wigderson (BGW) (Ben-Or et al., 1988)

@ Chaum-Crepeau-Damgard (CCD) (Chaum et al., 1988)

@ All of these protocols have a number of rounds linear in the
depth of the circuit C computing F

@ BMR protocol (Beaver et al., 1990) runs in a constant (in the
depth of C) number of rounds, while achieving security against
any t < n number of corruptions among n parties

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

BMR Intuition

@ The BMR protocol adapts the main idea of Yao’s GC to a
multi-party setting

@ GC is chosen as a starting point due to its round-efficiency

@ The basic BMR idea is to perform a distributed GC generation,
so that no proper subsets of all parties know GC secrets:

o the label assignment and correspondence

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Encoding GC Genera

@ GC generation can be represented as a circuit Cgen
@ Using MPC, Cgen can be evaluated securely to produce GC

e This is possible by first generating (in parallel) all wire
labels independently, and
e then independently generating garbled gate tables

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Encoding GC Genera

@ Because of parallel processing for all gates/wires, the GC
generation is independent of the depth of the circuit

@ As aresult, the GC generation circuit Cggy is constant-depth for
all computed circuits C (once the security parameter « is fixed)

@ Even if the parties perform MPC evaluation of Cggn that
depends on the depth of Cggn, the overall BMR protocol will still
have constant rounds overall

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Delivery of Active Inp

@ The MPC output, the GC produced by securely evaluating
CGEN, may be delivered to a designated player, say P;, who will
then evaluate it similarly to Yao’'s GC

@ But, the challenge is how to deliver the active input labels to P4

@ There are several ways how this may be achieved, depending on
how exactly the MPC GC generation proceeded

@ It is conceptually simplest to view this as part of the GC
generation computation

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Delivery of Active Inp

@ In concrete terms, the above approach can lead to high cost:

@ requiring the garbled row encryption function (instantiated
as a PRF or hash function) evaluation inside MPC

@ Several protocols were proposed, which allow the PRF/hash
evaluation to be extracted from inside the MPC

e instead be done locally by the parties while providing the
output of PRF/hash into the MPC

@ The underlying idea of such an approach is to assign different
portions of each label to be generated by different players

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Constant-Round MPC
GC Generation Circuit
The CGEN Circuit

@ A wire wy's labels w} are a concatenation of sub-labels W;]-,
each generated by P;

@ Then, for a gate G; with input labels w;?, w,* and the output
label wg°, the garbled row corresponding to input values va, vp
and output value v, can simply be:

P Ve P
= we" @ (F(iwis) o F (iwls))
j=1...n

@ F:{0,1}" — {0,1}"" is a PRG extending « bits into n - bits

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Constant-Round MPC
GC Generation Circuit
The CGEN Circuit

@ The generation of the garbled table row is almost entirely done
locally by each party

@ Each P; computes F (i, w;’;) ® F (i, ng’j) and submits it to the
MPC that simply xors all the values to produce the garbled row
@ Security violation:

e The GC evaluator Py will reconstruct active labels
e The knowledge of its own contributed sub-labels allows it to
identify which plaintext value the active label corresponds to

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ConStant-Round MPC _
GC Generation Circuit
Preventing Py from K

@ Each player P; adds a flip bit £, ; to each wire w;

@ The xor of the nflip bits, f, = @,_; , fa,, determines which
plaintext bit v corresponds to the wire label w,

@ The flip bits will be an additional input into the garbling MPC

@ With the addition of the flip bits, no subset of players will know
the wire flip bit

@ Hence, this additional randomization can prevent the evaluator
from inferring the plaintext value from its active sub-labels

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Constant-Round MPC
The BMR Protocol
BMR - Setting

Parameters:

@ Boolean circuit C implementing function F

@ F:{0,k}"+— {0,1}™"*1 is a pseudo-random generator (PRG)
Players:

@ Py,...,P,withinputs xy,...,x, € {0,1}¥

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Constant-Round MPC
BMR - Input Preparat

@ For each wire w; of C, each P; randomly chooses wire
sub-labels, w}; = (k,f?j,pfjj) €r {0,111 such that
p?;=1—p];*, and flip-bit shares f,; €p {0, 1}

@ For each wire w;, P; locally computes its underlying-MPC input:

hy = [F(w3), F (wi)) .0)]

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Constant-Round MPC
BMR - GC Generatio

@ For each gate G; of C, in parallel, all players participate in
n-party MPC to compute the garbled table based on a GC

generation function, Cggx

@ The input of Cgen: all players’ inputs xq, ..., x, as well as
pre-computed values /;;

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Constant-Round MPC
The BMR Protocol
BMR - Cgen

@ Assume G; is a 2-input Boolean gate implementing function g,
with input wires w,, w;, and output wire w,

@ Compute pointer bits:
° p)= Di1.n pg,j and p} =1 - pj
° pp= ST pg,j and p, =1 -pjp
o pd =@y ,P2;andpi=1-p

© Similarly compute flip bits:

° fa= @j:k.n faj
° fh=EDj1. nhj
° fo= @/:1...n fej

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Constant-Round MPC
The BMR Protocol
BMR - Cgen

© Create G/’s garbled table: for each of 22 possible combinations
of Gj’s input values v, v € {0, 1}, set

v.v, = WVC@fC @ (F <I WVa@f"") @ F (I WZ”]@fb))

Jj=1...n
where wg = wl,|[- [|w2, and wl = wl, |- [|wd,,

© Sort entries e in the table: placing entry e, ,, in position (pa, p)

Q@ Output to Py the computed garbled tables, as well as active wire

labels inputs of C, as selected by players’ inputs xi, ..., x, and
the flip bits £, f, f¢

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Outline

e Oblivious Transfer
@ Public Key-based OT
@ 1-out-on-N OT
@ Efficient OT Extension

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Oblivious Transfer (O

@ Oblivious Transfer is an essential building block for secure
computation protocols, and an inherently asymmetric primitive

@ Beaver (1996) showed a batched execution of OT only needs a
small number of public key operations

@ Beaver’s construction was non-black-box in the sense that a PRF
needed to be represented as a circuit and evaluated as MPC

@ Thus, Beaver’s result was mainly of theoretical interest

@ Ishai et al. (2003) proposed an extremely efficient batched OT
which only required « of public key operations for the entire
batch and two or three hashes per OT

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Oblivious Transfer
Public Key-based OT

Parameters:
@ Two parties: Sender S and Receiver R

@ Input: S has two secrets xp, X; € {0,1}", and R has a selection
bit b € {0,1}

@ Output: (S, L), (R, xp)
Security guarantee:

@ Semi-honest

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Oblivious Transfer
Public Key-based OT

@ R generates a public-private key pair sk, pk, and samples a
random key pk’ from the public key space

e If b=0, R sends (pk, pk’) to S
e If b=1, R sends (pk’,pk) to S

© S receives (pky, pki) and sends back to R two encryptions
€ = Encpy,(Xo) and eq = Encpy, (X1)

© R receives ey, e; and decrypts the ciphertext ey, using sk (R is
unable to decrypt the second ciphertext as it does not have the
corresponding secret key)

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Oblivious Transfer
Public Key-based OT

@ The security of the construction assumes the existence of
public-key encryption with the ability to sample a random public
key without obtaining the corresponding secret key

@ The scheme is secure in the semi-honest model

@ S only sees the two public keys sent by R, so cannot predict with
probability better than % which key was generated without the
secret key

@ R sees two encryptions and has a secret key to decrypt only
one of them

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Oblivious Transfer
Public Key-based OT

@ Note that this semi-honest protocol provides no security against
a malicious receiver

@ R can simply generate two public-private key pairs (sko, pko)
and (sky, pki) and send (pky, pki) to S

@ Then it decrypts received ciphertexts to learn both x; and x,

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Public Key-based OT
Oblivious Transfer

EGL (1985) 1-2 OT

@ Bob has two messages my and m;, and Alice has an index or a
bit b, and Alice wants to retrieve my, without Bob learning b

@ In addition, Bob wants to make sure that Alice only receives one
of the two messages

@ The following protocol was proposed by Even, Goldreich and
Lempel, 1985

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Oblivious Transfer
EGL OT Protocol

@ Bob sends N, e, xp and x; to Alice, where xo and x; are
randomly chosen from {1,..., N — 1}, where e is the public key
of RSA and Bob knows the private key d

@ Alice randomly selects k € {1,...,N — 1}, and sends
v = (k® mod N) @ x, to Bob

© Bob computes ky = (v @ xo)d mod N and k1 = (v& x1)d mod N,
and sends zop = my @ kg and z; = my @ Ky to Alice

© Alice computes mp = z, @ k

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

1-out-of-N OT

@ Bob has n messages my, ..., m,, and Alice has an index i
(1 < i< n), and Alice wants to retrieve m;, without Bob learning /

@ In addition, Bob wants to make sure that Alice only receives one
of the n messages

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

1-out-of-N OT

@ 1-n OT can be built on top of a number of 1-2 OTs
@ Suppose n=2'and m; € {0,1}°
@ The follow OT protocol was proposed by Naor and Pinkas 1999

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

NP OT Protocol

@ Bob prepares / random pairs of keys
(K1Oa K11)) (K207K21) gocog (I{I07l</1)

where KP (1 <j</and b € {0,1}) is a t-bit key to a
pseudo-random function FK/_b :{0,1}° — {0,1}5. For any
1 <i<n,let(i,b,...,i) bethe bits of i, and compute

!
Yi=m;® @FK}‘/(/)
=

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

NP OT Protocol

Q Via/1-2 OTs, the j" 1-2 OT is performed on (K;), K,ﬁ), Alice
retrieves K{', K2, ..., K]' for her index i denoted by (i, ia, . . ., i}).
© Bob sends y, ys, . .., ¥s to Alice

© Alice retrieves

/
m; = y; & @ F,; (i)
=t

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Oblivious Transfer
Efficient OT Extension
OT Extension

@ The first simple protocol requires one public key operation for
both the sender and receiver for each selection bit

@ As used in a Boolean circuit-based MPC protocol such as Yao’s
GG, it is necessary to perform an OT for each input bit of the
party executing the circuit

@ For GMW, evaluating each AND gate requires an OT

@ Hence, several works have focused on reducing the number of
public key operations to perform a large number of OTs

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
Reducing the Numbe

@ As discussed in Section 3.1, the GC protocol for computing a
circuit C requires m OTs, where m is the number of input bits
provided by P»

@ Following the OT notation, we call Py (the generator in GC) the
sender S, and P, (the evaluator in GC) the receiver R

@ S'sinput will be m pairs of secrets (x?, x{),..., (x%, x}), and R’s
input will be m-bit selection string r = (1, ..., m)

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
Reducing the Numbe

@ Our goal is to use a small number k of base-OTs, plus only
symmetric-key operations, to achieve m > k effective OTs

@ k depends on the computational security parameter «

@ Below we describe the OT extension by Ishai et al. (2003) that
achieves m 1-out-of-2 OT of random strings, in the presence of
semi-honest adversaries

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
The IKNP Protocol

@ Suppose the receiver R has choice bits r € {0,1}"”
@ R chooses two m by k matrices (m rows, k columns) T and U
@ Let t;, y; € {0, 1} denote the j-th row of T and U respectively

@ T is chosen at random, and U is derived as follows:

def 1k iff}‘:'l
O@U/=f/'1k={ :
ok ifr,=0

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
The IKNP Protocol

@ The sender S chooses a random string s € {0, 11X, and the
parties engage in k instances of 1-out-of-2 string-OT:

o with their roles reversed, to transfer to sender S the
columns of either T or U
e depending on the sender’s bit s; in the string s it chose

@ In the i-th OT, R provides inputs ' and v/, where these refer to
the i-th column of T and U respectively

@ S uses s; as its choice bit and receives output g’ € {t', u'}

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
The IKNP Protocol

@ Note that these are OTs of strings of length m > k, and the
length of OT messages is easily extended, e.g.,

e encrypting and sending the two m-bit long strings, and
using OT on short strings to send the right decryption key

@ Let Q denote the matrix obtained by the sender, whose columns
are @', and let g; denote the j-th row:

def t/ ifl’/'ZO
i=bLd|n-s] = 3.2
g =tolr- s {tj@s it ri =1 (3.2)

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
The IKNP Protocol

@ Let H be a Random Oracle (RO), and S can compute two
random strings H(q;) and H(q; @ s) of which R can compute
only one, via H({;) of R’s choice

@ According to the previous equation, it is obvious that equals
either g; or g; © s, depending on R’s choice bit r;

@ Note that R has no information about s, so intuitively it can learn
only one of the two random strings H(q;) and H(g; & s)

@ Hence, each of the m rows of the matrix can be used to produce
a single 1-out-of-2 OT of random strings

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
The IKNP Protocol

@ Recall S has m pairs of secrets (x2, x}),...,(x2, x1), and R has
m-bit selection string r = (r1, ..., I'm)

@ After k OTs, S has g1, ..., Qm:

f; if =0
a9 = t He
ds ifrp=1

@ S and R perform the following steps

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
The IKNP Protocol

@ Forjec{1,...,m}, S computes:
° o = H(q) ®x’
° e =H(gos)ox

Sends {(ejo, e}>}je{1....) to R

. 0 1 .
Q R receives {(ej)) }je{1,...,m} from S, and computes:

o x/ =el @H(t),forje{1,...,m}

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

ObliVious TranSfer _
Efficient OT Extension
Selecting Values for k

@ The parameter k determines the number of base OTs and the
overall cost of the protocol

@ The IKNP protocol sets k = x

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Private Set InterseCtion _
Outline

e Private Set Intersection
@ Oblivious PRF
@ Cuckoo Hashing
@ PSI from OPRF

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Private Set Intersectic

@ The goal of private set intersection (PSlI) is to enable a group of
parties to jointly compute the intersection of their input sets,

e without revealing any other information about those sets
(other than upper bounds on their sizes)

@ Although protocols for PSI have been built upon generic MPC
(Huang et al., 2012a), more efficient custom protocols can be
achieved by taking advantage of the structure of the problem

@ We present a PSI protocol of Pinkas et al. (2015), which heavily
uses Oblivious PRF (OPRF) as a subroutine

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Oblivious PRF
Private Set Intersection
Oblivious PRF

@ OPRF is an MPC protocol which allows two players P; and P- to
evaluate a PRF F where

@ P4 holds the PRF key k, and P, holds the PRF input x
e P, gets Fx(x)

@ We now describe the Pinkas-Schneider-Segev-Zohner (PSSZ)
construction (Pinkas et al., 2015) building PSI from an OPRF

@ For concreteness, we describe the parameters used in PSSZ
when the parties have roughly the same number n of items

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Private Set Intersection
Cuckoo Hashing

@ The protocol relies on Cuckoo hashing (Pagh and Rodler, 2004)
with 3 hash functions

@ To assign n items into b bins using Cuckoo hashing, first choose
random functions hy, hy, hs : {0,1}* — [b] and initialize empty
bins B[1, ..., b]

@ To hash an item x, first check to see whether any of the bins
Bl (x)], Blha(x)], Blhs(x)] are empty

@ If so, then place x in one of the empty bins and terminate

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Private Set Intersection
Cuckoo Hashing

@ Otherwise, choose a random i € {1,2, 3}, evict the item
currently in B[h;(x)] and replace it with x, and then recursively
try to insert the evicted item

@ |[f this process does not terminate after a certain number of
iterations, then the final evicted element is placed in a special
bin called the stash

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

The PSSZ Protocol

@ First, the parties choose 3 random hash functions hy, ho, hs
suitable for 3-way Cuckoo hashing

@ Suppose P; has input set X and P- has input set Y, where
X|=1Y|=n

@ P, maps its items into 1.2n bins using Cuckoo hashing and a
stash of size s

e At this point, P, has at most one item per bin and at most s
items in its stash

@ P, pads its input with dummy items so that each bin contains
exactly one item and the stash contains exactly s items

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

The PSSZ Protocol

@ The parties then run 1.2n + s instances of OPRF where P, plays
the receiver and uses each of its 1.2n+ s items as input to OPRF

@ Let F(kj, -) denote the PRF evaluated in the i-th OPRF instance,
and each k; €g {0, 1}” only known to P4

@ Then P learns the following:

e F(ki,y): if P, mapped item y to bin i via Cuckoo hashing
o F(ki.2nyj,y): if P> mapped y to position j in the stash

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

The PSSZ Protocol

@ On the other hand, P; can compute F(k;, -) for any value
@ Py computes sets of candidate PRF outputs:

H={F (Knx),X) |x € Xand i € {1,2,3}}
S={F(kian,X)|x e Xandje{1,...,s}}

@ P; randomly permutes elements of H and S and sends them to
P> who can identify the intersection of X and Y as follows

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

The PSSZ Protocol

@ If P; has an item y mapped to a hashing bin, it checks whether
its associated OPRF output is in H

@ If P> has an item y mapped to the stash, it checks whether the
associated OPRF output is present in S

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

The PSSZ Protocol -

@ Intuitively, the protocol is secure against a semi-honest P, by the
PRF property

@ For anitem x € X — Y, the corresponding PRF outputs F(ki;, X)
are pseudorandom

@ Similarly, if the PRF outputs are pseudorandom even under
related keys, then it is safe for the OPRF protocol to instantiate
the PRF instances with related keys

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

The PSSZ Protocol -

@ The protocol is correct as long as the PRF does not introduce
any further collisions, i.e.,

o F(k,x)=F(k' x"),forx # x’

@ We must carefully set the parameters required for the PRF to
prevent such collisions

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

Acknowledgment

@ Chapter 3: Fundamental MPC Protocols, A Pragmatic Introduction to
Secure Multi-Party Computation
https://securecomputation.org/

@ S. Even, O. Goldreich, and A. Lempel. A randomized protocol for

signing contracts. Communications of the ACM, 28(6):637—647, June
1985

@ M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In
Proceedings of the Thirty-first Annual ACM Symposium on Theory of
Computing, pages 245-254, Atlanta, Georgia, United States, 1999.
ACM Press

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001

https://securecomputation.org/

	Constant-Round MPC
	Protocol Overview
	GC Generation Circuit
	The BMR Protocol

	Oblivious Transfer
	Public Key-based OT
	1-out-on-N OT
	Efficient OT Extension

	Private Set Intersection
	Oblivious PRF
	Cuckoo Hashing
	PSI from OPRF

	Appendix
	Appendix

