
6
Malicious Security

So far, we have focused on semi-honest protocols which provide privacy
and security only against passive adversaries who follow the protocol as
specified. The semi-honest threat model is very weak. It makes assumptions
that underestimate the power of realistic adversaries, for most scenarios. This
chapter discusses several protocols, summarized in Table 6.1, that are designed
to resist malicious adversaries.

6.1 Cut-and-Choose

Yao’s GC protocol is not secure against malicious adversaries. In particular,
P1 is supposed to generate and send a garbled version of F to P2. A malicious

Protocol Parties Rounds Based on
Cut-and-Choose (§6.1–6.4) 2 constant Yao’s GC (§3.1)
GMW compiler (§6.5.1) many (inherited) any semi-honest
BDOZ & SPDZ (§6.6) many circuit depth preprocessing
Authenticated garbling (§6.7) many constant BMR (§3.5)

Table 6.1: Summary of malicious MPC protocols discussed in this chapter.

102

6.1. Cut-and-Choose 103

P1 may send the garbling of a different circuit that P2 had not agreed to
evaluate, but P2 has no way to confirm the circuit is correct. The output of the
maliciously-generated garbled circuit may leak more than P2 has agreed to
reveal (for instance, P2’s entire input).

Main idea: check some circuits, evaluate others. The standard way to
address this problem is a technique called cut-and-choose, a general idea that
goes back at least to Chaum (1983), who used it to support blind signatures.

To use cut-and-choose to harden Yao’s GC protocol, P1 generates many
independent garbled versions of a circuit C and sends them to P2. P2 then
chooses some random subset of these circuits and asks P1 to “open” them
by revealing all of the randomness used to generate the chosen circuits. P2
then verifies that each opened garbled circuit is a correctly garbled version
of the agreed-upon circuit C. If any of the opened circuits are found to be
generated incorrectly, P2 knows P1 has cheated and can abort. If all of the
opened circuits are verified as correct, P2 continues the protocol. Since the
opened circuits have had all of their secrets revealed, they cannot be used for
the secure computation. However, if all of the opened circuits were correct, P2
has some confidence that most of the unopened circuits are also correct. These
remaining circuits can then be evaluated as in the standard Yao protocol.

Generating an output. Cut-and-choose cannot ensure with non-negligible
probability that all unopened circuits are correct. Let’s say that P1 generates s
garbled circuits, and each one is checked with independent probability 1

2 . Then
if P1 generates only one of the circuits incorrectly, then with (non-negligible)
probability 1

2 that circuit will not be chosen for checking and will become one
of the evaluation circuits. In this event P2 may get inconsistent outputs from
the evaluated circuits.

IfP2 sees inconsistent outputs, then it is obvious toP2 thatP1 ismisbehaving.
It is tempting to suggest that P2 should abort in this case. However, to do
so would be insecure! Suppose P1’s incorrect circuits are designed to be
selectively incorrect in a way that depends on P2’s input. For example, suppose
an incorrect circuit gives the wrong answer if the first bit of P2’s input is 1.
Then, P2 will only see disagreeing outputs if its first bit of input is 1. If P2
aborts in this case, the abort will then leak the first bit of its input. So we are in

104 Malicious Security

a situation where P2 knows for certain that P1 is cheating, but must continue
as if there was no problem to avoid leaking information about its input.

Traditionally, cut-and-choose protocols address this situation by making
P2 consider only the majority output from among the evaluated circuits. The
cut-and-choose parameters (number of circuits, probability of checking each
circuit) are chosen so that

Pr[majority of evaluated circuits incorrect ∧ all check circuits correct]

is negligible. In other words, if all of the check circuits are correct, P2 can
safely assume that the majority of the evaluation circuits are correct too. This
justifies the choice to use the majority output.

Input consistency. In cut-and-choose-based protocols, P2 evaluates several
garbled circuits. The fact that there are several circuits presents an additional
problem: a malicious party may try to use different inputs to different garbled
circuits. Input consistency refers to the problem of ensuring that both parties
use the same input to all circuits.

Ensuring consistency of P2’s inputs (i.e. preventing a malicious P2 from
submitting different inputs) is generally easier. Recall that in Yao’s protocol,
P2 picks up garbled input using oblivious transfer (OT) as receiver. The parties
can perform a single OT for each bit of P2’s input, whose payload is the garbled
input corresponding to that bit, for all circuits. Because P1 prepares the OT
payloads, they can ensure that P2 only receives garbled inputs corresponding
to the same input for all circuits.

Ensuring input consistency for P1 is more challenging. One approach
(see Section 6.8 for others), proposed by shelat and Shen (2011), has the
parties evaluate the function ((x, r), y) 7→ (F (x, y),H(x, r)) where H is a
2-universal hash function. The 2-universal property is that for all z , z′,
Pr[H(z) = H(z′)] = 1

2` , where the probability is over the random choice of H
and ` is the output length of H in bits. The idea is to make P1 first commit to
its (garbled) inputs; then P2 chooses a random H which determines the circuit
to garble. Since P1’s inputs are fixed before H is chosen, any inconsistent
inputs will lead to different outputs from H, which P2 can detect. In order to
ensure that the H-output does not leak information about P1’s input x, P1 also
includes additional randomness r as argument to H, which hides x when r

6.1. Cut-and-Choose 105

is sufficiently long. As shown by shelat and Shen (2011), multiplication by a
random Boolean matrix is a 2-universal hash function. When such a function
H is made public, the resulting circuit computing H consists of exclusively
XOR operations, and therefore adds little cost to the garbled circuits when
using the FreeXOR optimization.

Selective abort. Another subtle issue is even if all garbled circuits are correct,
P1 may still cheat by providing incorrect garbled inputs in the oblivious transfers.
Hence it does not suffice to just check the garbled circuits for correctness. For
instance, P1 may select its inputs to the OT so that whenever P2’s first input
bit is 1, P2 will pick up garbage wire labels (and presumably abort, leaking the
first input bit in the process). This kind of attack is known as a selective abort
attack (sometimes called selective failure). More generally, we care about when
P1 provides selectively incorrect garbled inputs in some OTs (e.g., P1 provides
a correct garbled input for 0 and incorrect garbled input for 1), so that whether
or not P2 receives incorrect garbled inputs depends on P2’s input.

An approach proposed by Lindell and Pinkas (2007) (and improved in
shelat and Shen (2013)) uses what are called k-probe-resistant matrices. The
idea behind this technique is to agree on a public matrix M and for P2 to
randomly encode its true input y into ỹ so that y = M ỹ. Then the garbled circuit
will compute (x, ỹ) 7→ F (x, M ỹ) and P2 will use the bits of ỹ (rather than y) as
its inputs to OT. The k-probe-resistant property of M is that for any nonempty
subset of rows of M, their XOR has Hamming weight at least k. Lindell and
Pinkas (2007) show that if M is k-probe-resistant, then the joint distribution
of any k bits of ỹ is uniform—in particular, it is independent of P2’s true input
y. Furthermore, when M is public, the computation of ỹ 7→ M ỹ consists of
only XOR operations and therefore adds no cost to the garbled circuit using
FreeXOR (though the increased size of ỹ contributes more oblivious transfers).

The k-probe-resistant encoding technique thwarts selective abort attacks
in the following way. If P1 provides selectively incorrect garbled inputs in at
most k OTs, then these will be selectively picked up by P2 according to at most
k specific bits of ỹ, which are completely uniform in this case. Hence, P2’s
abort condition is input-independent. If on the other hand P1 provides incorrect
garbled inputs in more than k OTs, then P2 will almost surely abort—at least
with probability 1 − 1/2k . If k is chosen so that 1/2k is negligible (e.g., if

106 Malicious Security

k = σ, the statistical security parameter), then any input-dependent differences
in abort probability are negligible.

Concrete parameters. Cut-and-choose mechanisms involve two main pa-
rameters: the replication factor is the number of garbled circuits that P1 must
generate, and the checking probability refers to the probability with which
a garbled circuit is chosen to be checked in the cut-and-choose phase. An
obvious goal for any cut-and-choose protocol is to minimize the replication
factor needed to provide adequate security.

In the cut-and-choose protocol described above, the only way an adversary
can break security of the mechanism is to cause a majority of evaluation
circuits to be incorrect, while still making all checked circuits correct. The
adversary’s task can be captured in the following abstract game:

• The player (arbitrarily) prepares ρ balls, each one is either red or green.
A red ball represents an incorrectly-garbled circuit while a green ball
represents a correct one.

• A random subset of exactly c balls is designated to be checked. If any
checked ball is red, the player loses the game.

• The player wins the game if the majority of the unchecked balls are red.

We want to find the smallest ρ and best c so that no player can win the game
with probability better than 2−λ. The analysis of shelat and Shen (2011) found
that the minimal replication factor is ρ ≈ 3.12λ, and the best number of items
to check is c = 0.6ρ (surprisingly, not 0.5ρ).

Cost-aware cut-and-choose. The results from shelat and Shen (2011) pro-
vide an optimal number of check and evaluation circuits, assuming the cost
of each circuit is the same. However, some circuits are evaluated and others
are checked, and these operations do not have equal cost. In particular, the
computational cost of evaluating a garbled circuit is about 25–50% the cost
of checking a garbled circuit for correctness since evaluating just involves
executing one path through the circuit, while checking must verify all entries
in the garble tables. Also, some variants of cut-and-choose (e.g., Goyal et al.
(2008)) allow P1 to send only a hash of a garbled circuit up-front, before P2

6.2. Input Recovery Technique 107

chooses which circuits to open. To open a circuit, P1 can simply send a short
seed that was used to derive all the randomness for the circuit. P2 can then
recompute the circuit and compare its hash to the one originally sent by P1.
In protocols like this, the communication cost of a checked circuit is almost
nothing—only evaluation circuits require significant communication.

Zhu et al. (2016) study various cut-and-choose games and derive parameters
with optimal cost, accounting for the different costs of checking and evaluating
a garbled circuit.

6.2 Input Recovery Technique

In the traditional cut-and-choose mechanisms we have described so far, the
evaluator (P2) evaluates many garbled circuits and reports the majority output.
As previously mentioned, the overhead of this method is well understood—the
replication factor for security 2−λ is roughly 3.12λ. Reducing this replication
factor requires a different approach to the entire cut-and-choose mechanism.

Lindell (2013) and Brandão (2013) independently proposed cut-and-choose
protocols breaking this replication factor barrier. These protocols give P2 a way
of identifying the correct output in the event that some of the evaluated circuits
disagree. Hence, the only way for a malicious P1 to break security is to force
all of the evaluated circuits to be incorrect in the same way (rather than simply
forcing amajority of them to be incorrect as in the previous protocols). Suppose
there are ρ circuits, and each one is checked with independent probability 1

2 .
The only way to cheat is for all of the correct circuits to be opened and all of
the incorrect circuits to be evaluated, which happens with probability 2−ρ. In
short, one can achieve 2−λ security with replication factor only ρ = λ rather
than ρ ≈ 3.12λ. The protocol of Lindell (2013) proceeds in two phases:

1. The parties do a fairly typical cut-and-choose with P1 generating many
garbled circuits, and P2 choosing some to check and evaluating the rest.
Suppose P2 observes different outputs from different garbled circuits.
Then, P2 obtains output wire labels for the same wire corresponding to
opposite values (e.g., a wire label encoding 0 on the first output wire
of one circuit, a label encoding 1 on the first output wire of another
circuit). When P1 is honest, it is infeasible to obtain such contradictory
wire labels. Hence, the wire labels serve as “proof of cheating”. But,

108 Malicious Security

for the same reasons as mentioned above, P2 must not reveal whether it
obtained such a proof since that event may be input-dependent and leak
information about P2’s private input.

2. In the second phase, the parties do a malicious-secure computation of
an input recovery function: if P2 can provide proof of cheating in phase
1, then the function “punishes” P1 by revealing its input to P2. In that
case, P2 has both parties’ inputs and can simply compute the correct
output locally. Otherwise, when P2 does not provide proof of cheating,
P2 learns nothing from this second phase. Either way, P1 learns nothing
from this second phase.

There are many subtle details that enable this protocol to work. Some of
the most notable are:

• The secure computation in the second phase is done by using a traditional
(majority-output) cut-and-choose protocol. However, the size of this
computation can be made to depend only on the size of P1’s input. In
particular, it does not depend on the size of the circuit the parties are
evaluating in phase 1.

• In order to make the circuits for the second phase small, it is helpful
if all garbled circuits share the same output wire labels. When this is
the case, opening any circuit would reveal all output wire labels for all
evaluation circuits and allows P2 to “forge” a proof of cheating. Hence
the check circuits of phase 1 cannot be opened until the parties’ inputs
to phase 2 have been fixed.

• The overall protocol must enforce that P1 uses the same input to all
circuits in both phases. It is important that if P1 uses input x in phase 1
and cheats, it cannot prevent P2 from learning that same x in phase 2.
Typical mechanisms for input consistency (such as the 2-universal hash
technique described above) can easily be adapted to ensure consistency
across both phases in this protocol.

• For the reasons described previously, P2 cannot reveal whether it ob-
served P1 cheating in the first phase. Analogously, the protocol gives
P2 two avenues to obtain the final output (either when all phase-one

6.3. Batched Cut-and-Choose 109

circuits agree, or by recovering P1’s input in phase two and computing
the output directly), but P1 cannot learn which one was actually used.
It follows that the parties must always perform the second phase, even
when P1 is caught cheating.

6.3 Batched Cut-and-Choose

As a motivating scenario, consider the case where two parties know in advance
that they would like to perform N secure evaluations of the same function f
(on unrelated inputs). In each secure computation, P1 would be required to
generate many garbled circuits of f for each cut-and-choose. The amortized
costs for each evaluation can be reduced by performing a single cut-and-choose
for all N evaluation instances.

Consider the following variant of the cut-and-choose abstract game:

1. The player (arbitrarily) prepares Nρ + c balls, each one is either red or
green.

2. A random subset of exactly c balls is designated to be checked. If any
checked ball is red, the player loses the game.

3. [new step] The unchecked balls are randomly assigned into N buckets,
with each bucket containing exactly ρ balls.

4. [modified step] The player wins if any bucket contains only red balls (in
a different variant, one might specify that the player wins if any bucket
contains a majority of red balls).

This game naturally captures the following high-level idea for a cut-and-
choose protocol suitable for a batch of N evaluations of the same function.
First, P1 generates Nρ + c garbled circuits. P2 randomly chooses c of them to
be checked and randomly assigns the rest into N buckets. Each bucket contains
the circuits to be evaluated in a particular instance. Here we are assuming that
each instance will be secure as long as it includes at least one correct circuit
(for example, using the mechanisms from Section 6.2).

Intuitively, it is now harder for the player (adversary) to beat the cut-and-
choose game, since the evaluation circuits are further randomly assigned to

110 Malicious Security

buckets. The player must get lucky not only in avoiding detection during
checking, but also in having many incorrect circuits placed in the same bucket.

Zhu and Huang (2017) give an asymptotic analysis showing that replication
ρ = 2 + Θ(λ/log N) suffices to limit the adversary to success probability 2−λ.
Compare this to single-instance cut-and-choose which requires replication
factor O(λ).1 The improvement over single-instance cut-and-choose is not just
asymptotic, but is significant for reasonable values of N . For instance, for
N = 1024 executions, one achieves a security level of 2−40 if P1 generates
5593 circuits, of which only 473 are checked. Then only ρ = 5 circuits are
evaluated in each execution.

Lindell and Riva (2014) and concurrently Huang et al. (2014) described
batch cut-and-choose protocols following the high-level approach described
above. The former protocol was later optimized and implemented in Lindell
and Riva (2015). The protocols use the input-recovery technique so that each
instance is secure as long as at least one correct circuit is evaluated.

6.4 Gate-level Cut-and-Choose: LEGO

In batch cut-and-choose, the amortized cost per bucket/instance decreases as
the number of instances increases. This observation was the foundation of the
LEGO paradigm for malicious-secure two-party computation, introduced by
Nielsen and Orlandi (2009). The main idea is to do a batch cut-and-choose on
individual garbled gates rather than on entire garbled circuits:

1. P1 generates a large number of independently garbled NAND gates, and
the parties perform a batch cut-and-choose on them. P2 chooses some
gates to check and randomly assigns the remaining gates into buckets.

2. The buckets of gates are assembled into a garbled circuit in a process
called soldering (described in more detail below).

• The gates within a single bucket are connected so that they collec-
tively act like a fault-tolerant garbled NAND gate, which correctly

1The replication factor in this modified game measures only the number of evaluation
circuits, whereas for a single instance we considered the total number (check and evaluation) of
circuits. In practice, the number of checked circuits in batch cut-and-choose is quite small, and
there is little difference between amortized number of total circuits vs. amortized number of
evaluation circuits.

6.4. Gate-level Cut-and-Choose: LEGO 111

computes the NAND function as long as a majority of gates in the
bucket are correct.

• The fault-tolerant garbled gates are connected to form the desired
circuit. The connections between garbled gates transfer the garbled
value on the output wire of one gate to the input wire of another.

3. P2 evaluates the single conceptual garbled circuit, which is guaranteed
to behave like a correct garbled circuit with overwhelming probability.

We now describe the soldering process in more detail, using the termi-
nology of Frederiksen et al. (2013). The paradigm requires a homomorphic
commitment, meaning that if P1 commits to values A and B independently,
it can later either decommit as usual, or can generate a decommitment that
reveals only A ⊕ B to P2.

P1 prepares many individual garbled gates, using the FreeXOR technique.
For each wire i, P1 chooses a random “zero-label” k0

i ; the other label for that
wire is k1

i = k0
i ⊕ ∆, where ∆ is the FreeXOR offset value common to all gates.

P1 sends each garbled gate, and commits to the zero-label of each wire, as well
as to ∆ (once and for all for all gates). In this way, P1 can decommit to k0

i or to
k1
i = k0

i ⊕ ∆ using the homomorphic properties of the commitment scheme.
If a gate is chosen to be checked, then P1 cannot open all wire labels

corresponding to the gate. This would reveal the global ∆ value and break
the security of all gates. Instead, P2 chooses a one of the four possible input
combinations for the gate at random, and P1 opens the corresponding input and
output labels (one label per wire). Then, P2 can check that the gate evaluates
correctly on this combination. An incorrectly-garbled gate can be therefore
caught only with probability 1

4 (Zhu and Huang (2017) provides a way to
increase this probability to 1

2). This difference affects the cut-and-choose
parameters (e.g., bucket size) by a constant factor.

Soldering corresponds to connecting various wires (attached to individual
gates) together, so that the logical value on a wire can be moved to another
wire. Say that wire u (with zero-label k0

u) and wire v (with zero-label k0
v) are to

be connected. Then P1 can decommit to the solder value σu,v = k0
u ⊕ k0

v . This
value allows P2 to transfer a garbled value from wire u to wire v during circuit
evaluation. For example, if P2 holds wire label kb

u = k0
u ⊕ b · ∆, representing

unknown value b, then xor-ing this wire label with the solder value σu,v results

112 Malicious Security

in the appropriate wire label on wire v:

kb
u ⊕ σu,v = (k0

u ⊕ b · ∆) ⊕ (k0
u ⊕ k0

v) = k0
v ⊕ b · ∆ = kb

v

Gates within a bucket are assembled into a fault-tolerant NAND gate by
choosing the first gate as an “anchor” and soldering wires of other gates to the
matching wire of the anchor (i.e., solder the left input of each gate to the left
input of the anchor). With ρ gates in a bucket, this gives ρ ways to evaluate the
bucket starting with the garbled inputs of the anchor gate—transfer the garbled
values to another gate, evaluate the gate, and transfer the garbled value back to
the anchor. If all gates are correct, all ρ of the evaluation paths will result in an
identical output wire label. If some gates are incorrect, the evaluator takes the
majority output wire label.

The LEGO paradigm can take advantage of the better parameters for batch
cut-and-choose, even in the single-execution setting. If the parties wish to
securely evaluate a circuit of N gates, the LEGO approach involves a replication
factor of O(1) +O(λ/log N), where λ is the security parameter. Of course, the
soldering adds many extra costs that are not present in circuit-level cut-and-
choose. However, for large circuits the LEGO approach gives a significant
improvement over circuit-level cut-and-choose that has replication factor λ.

Variations on LEGO. The LEGO protocol paradigm has been improved in
a sequence of works (Frederiksen et al., 2013; Frederiksen et al., 2015; Zhu
and Huang, 2017; Kolesnikov et al., 2017b; Zhu et al., 2017). Some notable
variations include:

• Avoiding majority-buckets in favor of buckets that are secure if even one
garbled gate is correct (Frederiksen et al., 2015).

• Performing cut-and-choose at the level of component subcircuits con-
sisting of multiple gates (Kolesnikov et al., 2017b).

• Performing cut-and-choose with a fixed-size pool of gates that is con-
stantly replenished, rather than generating all of the necessary garbled
gates up-front (Zhu et al., 2017).

6.5. Zero-Knowledge Proofs 113

6.5 Zero-Knowledge Proofs

An alternative to the cut-and-choose approach is to convert a semi-honest
protocol into a malicious-secure protocol by incorporating a proof that the
protocol was executed correctly. Of course, the proof cannot reveal the secrets
used in the protocol. Goldreich et al. (1987) shows how to use zero-knowledge
(ZK) proofs to turn any semi-honest MPC protocol into one that is secure
against malicious adversaries (Section 6.5.1).

Zero-knowledge proofs are a special case of malicious secure computation,
and were introduced in Section 2.4. ZK proofs allow a prover to convince a
verifier that it knows x such that C(x) = 1, without revealing any additional
information about x, where C is a public circuit.

6.5.1 GMW Compiler

Goldreich, Micali, and Wigderson (GMW) showed a compiler for secure multi-
party computation protocols that uses ZK proofs (Goldreich et al., 1987). The
compiler takes as input any protocol secure against semi-honest adversaries,
and generates a new protocol for the same functionality that is secure against
malicious adversaries.

Let π denote the semi-honest-secure protocol. The main idea of the GMW
compiler is to run π and prove in zero-knowledge that every message is the
result of running π honestly. The honest parties abort if any party fails to
provide a valid ZK proof. Intuitively, the ZK proof ensures that a malicious
party can either run π honestly, or cheat in π but cause the ZK proof to fail. If π
is indeed executed honestly, then the semi-honest security of π ensures security.
Whether or not a particular message is consistent with honest execution of π
depends on the parties’ private inputs. Hence, the ZK property of the proofs
ensures that this property can be checked without leaking any information
about these private inputs.

Construction. The main challenge in transforming a semi-honest protocol
into an analogous malicious-secure protocol is to precisely define the circuit
that characterizes the ZK proofs. Two important considerations are:

1. Each party must prove that each message of π is consistent with honest
execution of π, on a consistent input. In other words, the ZK proof

114 Malicious Security

should prevent parties from running π with different inputs in different
rounds.

2. The “correct” next message of π is a function of not only the party’s
private input, but also their private random tape. π guarantees security
only when each party’s random tape is chosen uniformly. In particular,
the protocol may be insecure if the party runs honestly but on some
adversarially-chosen random tape.

The first consideration is addressed by having each party commit to its
input upfront. Then all ZK proofs refer to this commitment: e.g., the following
message is consistent with an honest execution of π, on the input that is
contained inside the public commitment.

The second consideration is addressed by a technique called coin-tossing
into the well. For concreteness, we focus on the ZK proofs generated by P1.
Initially P1 produces a commitment to a random string r. Then P2 sends a
value r ′ in the clear. Now P1 must run π with r ⊕ r ′ as the random tape. In this
way, P1 does not have unilateral control over its effective random tape r ⊕ r ′—
it is distributed uniformly even if P1 is corrupt. P1’s ZK proofs can refer to the
commitment to r (and the public value r ′) to guarantee that π is executed with
r ⊕ r ′ as its random tape.

The full protocol description is given in Figure 6.1.

6.5.2 ZK from Garbled Circuits

Jawurek, Kerschbaum, and Orlandi (JKO) presented an elegant zero-knowledge
protocol based on garbled circuits (Jawurek et al., 2013). Since zero-knowledge
is a special case of malicious secure computation, one can obviously base
zero-knowledge on any cut-and-choose-based 2PC protocol. However, these
protocols require many garbled circuits. The JKO protocol on the other hand
achieves zero-knowledge using only one garbled circuit.

The main idea is to use a single garbled circuit for both evaluation
and checking. In standard cut-and-choose, opening a circuit that is used for
evaluation would reveal the private input of the garbled circuit generator.
However, the verifier in a zero-knowledge protocol has no private input. Thus,
the verifier can play the role of circuit garbler.

6.5. Zero-Knowledge Proofs 115

Parameters: Semi-honest-secure two-party protocol π = (π1, π2), where
πb(x, r,T) denotes the next message for party Pb on input x, random tape
r , and transcript so far T . A commitment scheme Com.

Protocol π∗: (P1 has input x1 and P2 has input x2)

1. For b ∈ {1, 2}, Pb chooses random rb and generates a commitment
cb to (xb, rb) with decommitment δb.

2. For b ∈ {1, 2}, Pb chooses and sends random r ′3−b (a share of the
counterpart’s random tape).

3. The parties alternate between b = 1 and b = 2 as follows, until the
protocol terminates:

(a) LetT be the transcript of π-messages so far (initially empty). Pb

computes and sends the next π-message, t = πb(xb, rb ⊕ r ′
b
,T).

If instead πb terminates, Pb terminates as well (with whatever
output πb specifies).

(b) Pb acts as prover in a ZK proof with private inputs xb, rb, δb,
and public circuit C[πb, cb, r ′b,T, t] that is defined as:
C[π, c, r ′,T, t](x, r, δ):

return 1 iff δ is a valid opening of commitment
c to (x, r) and t = π(x, r ⊕ r ′,T).

The other party P3−b aborts if verification of the ZK proof fails.

Figure 6.1: GMW compiler applied to a semi-honest-secure protocol π.

Suppose the prover P1 wishes to prove ∃w : F (w) = 1 where F is a public
function. The JKO protocol proceeds in the following steps:

1. The verifier P2 generates and sends a garbled circuit computing F .

2. The prover picks up garbled inputs for w, using oblivious transfer.

3. The prover evaluates the circuit and obtains the output wire label
(corresponding to output 1) and generates a commitment to this wire
label.

116 Malicious Security

4. The verifier opens the garbled circuit and the prover checks that it was
generated correctly. If so, then the prover opens the commitment to the
output wire label.

5. The verifier accepts if the prover successfully decommits to the 1 output
wire label of the garbled circuit.

The protocol is secure against a cheating prover because at the time P1
generates a commitment in step 3, the garbled circuit has not yet been opened.
Hence, if P1 does not know an input that makes F output 1, it is hard to predict
the 1 output wire label at this step of the protocol. The protocol is secure
against a cheating verifier because the prover only reveals the result of the
garbled circuit after the circuit has been confirmed to be generated correctly.

Because the garbled circuits used for this protocol only need to provide
authenticity and not privacy, their garbled tables can be implemented less
expensively than for standard Yao’s. Zahur et al. (2015) show that the half-
gates method can be used to reduce the number of ciphertexts needed for a
privacy-free garbled circuit to a single ciphertext for each AND gate, and no
ciphertexts for XOR gates.

6.6 Authenticated Secret Sharing: BDOZ and SPDZ

Recall the approach for secret-sharing based MPC using Beaver triples (Sec-
tion 3.4). This protocol paradigm is malicious-secure given suitable Beaver
triples and any sharing mechanism such that:

1. Sharings are additively homomorphic,

2. Sharings hide the underlying value against a (malicious) adversary, and

3. Sharings can be opened reliably, even in the presence of a malicious
adversary.

In this section we describe two sharing mechanisms with these properties:
BDOZ (Section 6.6.1) and SPDZ (Section 6.6.2).

6.6. Authenticated Secret Sharing: BDOZ and SPDZ 117

6.6.1 BDOZ Authentication

TheBendlin-Damgård-Orlandi-Zakarias (BDOZorBeDOZa) technique (Bendlin
et al., 2011) incorporates information-theoretic MACs into the secret shares.
Let F be the underlying field, with |F| ≥ 2κ where κ is the security parameter.
Interpreting K,∆ ∈ F as a key, define MACK,∆(x) = K + ∆ · x.

This construction is an information-theoretic one-time MAC. An adversary
who sees MACK,∆(x) for a chosen x cannot produce another valid MAC,
MACK,∆(x ′), for x , x ′. Indeed, if an adversary could compute such a MAC,
then it could compute ∆:

(x − x ′)−1
(
MACK,∆(x) −MACK,∆(x ′)

)
= (x − x ′)−1

(
K + ∆x − K − ∆x ′

)
= (x − x ′)−1(∆(x − x ′)) = ∆

But seeing only MACK,∆(x) perfectly hides ∆ from the adversary. Hence, the
probability of computing a MAC forgery is bounded by 1/|F| ≤ 1/2κ , the
probability of guessing a randomly chosen field element ∆.

In fact, the security of this MAC holds even when an honest party has many
MAC keys that all share the same ∆ value (but with independently random K
values). We refer to ∆ as the global MAC key and K as the local MAC key.

The idea of BDOZ is to authenticate each party’s shares with these
information-theoretic MACs. We start with the two-party case. Each party Pi

generates a globalMAC key∆i . Then [x] denotes the secret-sharingmechanism
where P1 holds x1,m1 and K1 and P2 holds x2,m2 and K2 such that:

1. x1 + x2 = x (additive sharing of x),

2. m1 = K2 +∆2x1 = MACK2,∆2(x1) (P1 holds a MAC of its share x1 under
P2’s MAC key), and

3. m2 = K1 +∆1x2 = MACK1,∆1(x2) (P2 holds a MAC of its share x2 under
P1’s MAC key).

Next, we argue that this sharing mechanism satisfies the properties required by
the Beaver-triple paradigm (Section 3.4):

118 Malicious Security

sharing P1 has P2 has
[x] x1 x2

K1 K2
MACK2,∆2(x1) MACK1,∆1(x2)

[x ′] x ′1 x ′2
K ′1 K ′2
MACK′2,∆2(x ′1) MACK′1,∆1(x ′2)

[x + x ′] x1 + x ′1 x2 + x ′2
K1 + K ′1 K2 + K ′2
MACK2+K

′
2,∆2(x1 + x ′1) MACK1+K

′
1,∆1(x2 + x ′2)

Figure 6.2: BDOZ authenticated sharing

• Privacy: the individual parties learn nothing about x since they only
hold one additive share, xp, and mp reveals nothing about x without
knowing the other party’s keys (which are never revealed).

• Secure opening: To open, each party announces its (xp,mp), allowing
both parties to learn x = x1 + x2. Then, P1 can use its MAC key to
check whether m2 = MACK1,∆1(x2) and abort if this is not the case. P2
performs an analogous check on m1. Note that opening this sharing to
any different value corresponds exactly to the problem of breaking the
underlying one-time MAC.

• Homomorphism: The main idea is that when all MACs in the system
use the same ∆ value, the MACs become homomorphic in the necessary
way. That is,

MACK,∆(x) +MACK′,∆(x ′) = MACK+K′,∆(x + x ′)

Here we focus on adding shared values [x] + [x ′]; the other required
forms of homomorphism work in a similar way. The sharings of [x] and
[x ′] and the resulting BDOZ sharing of [x + x ′] is shown in Figure 6.2.

The BDOZ approach generalizes to n parties in a straightforward (but
expensive) way. All parties have global MAC keys. In a single sharing [x], the

6.6. Authenticated Secret Sharing: BDOZ and SPDZ 119

parties have additive shares of x and each party’s share is authenticated under
every other party’s MAC key.

Generating triples. The BDOZ sharing method satisfies the security and
homomorphism properties required for use in the abstract Beaver-triples
approach. It remains to be seen how to generate Beaver triples in this format.

Note that BDOZ shares work naturally even when the payloads (i.e., x in
[x]) are restricted to a subfield of F. The sharings [x] are then homomorphic
with respect to that subfield. A particularly useful case is to use BDOZ for
sharings of single bits, interpreting {0, 1} as a subfield of F = GF(2κ). Note
that F must be exponentially large for security (authenticity) to hold.

The state of the art method for generating BDOZ shares of bits is the
scheme used by Tiny-OT (Nielsen et al., 2012). It uses a variant of traditional
OT extension (Section 3.7.2) to generate BDOZ-authenticated bits [x]. It then
uses a sequence of protocols to securely multiply these authenticated bits
needed to generate the required sharings for Beaver triples.

6.6.2 SPDZ Authentication

In BDOZ sharing, each party’s local part of [x] contains a MAC for every other
party. In other words, the storage requirement of the protocol scales linearly
with the number of parties. A different approach introduced by Damgård,
Pastro, Smart, and Zakarias (SPDZ, often pronounced “speeds”) (Damgård
et al., 2012b) results in constant-sized shares for each party.

As before, we start with the two-party setting. The main idea is to have a
global MAC key ∆ that is not known to either party. Instead, the parties hold
∆1 and ∆2 which can be thought of as shares of a global ∆ = ∆1 + ∆2. In a
SPDZ sharing [x], P1 holds (x1, t1) and P2 holds (x2, t2), where x1 + x2 = x
and t1 + t2 = ∆ · x. Thus, the parties hold additive shares of x and of ∆ · x. One
can think of ∆ · x as a kind of “0-time information-theoretic MAC” of x.

This scheme clearly provides privacy for x. Next, we show that it also
provides the other two properties required for Beaver triples:

• Secure opening: We cannot have the parties simply announce their
shares, since that would reveal ∆. It is important that ∆ remain secret
throughout the entire protocol. To open [x] without revealing ∆, the
protocol proceeds in 3 phases:

120 Malicious Security

1. The players announce only x1 and x2. This determines the (unau-
thenticated) candidate value for x.

2. Note that if this candidate value for x is indeed correct, then

(∆1x − t1) + (∆2x − t2) = (∆1 + ∆2)x − (t1 + t2)
= ∆x − (∆x)
= 0

Furthermore, P1 can locally compute the first term (∆1x − t1) and
P2 can compute the other term. In this step of the opening, P1
commits to the value ∆1x − t1 and P2 commits to ∆2x − t2.

3. The parties open these commitments and abort if their sum is not
0. Note that if the parties had simply announced these values one
at a time, then the last party could cheat by choosing the value that
causes the sum to be zero. By using a commitment, the protocol
forces the parties to know these values in advance.

To understand the security of this opening procedure, note that when P1
commits to some value c, it expects P2 to also commit to −c. In other
words, the openings of these commitments are easily simulated, which
implies that they leak nothing about ∆.

It is possible to show that if a malicious party is able to successfully
open [x] to a different x ′, then that party is able to guess ∆. Since the
adversary has no information about ∆, this event is negligibly likely.

• Homomorphism: In a SPDZ sharing [x], the parties’ shares consist of
additive shares of x and additive shares of ∆ · x. Since each of these
are individually homomorphic, the SPDZ sharing naturally supports
addition and multiplication-by-constant.

To support addition-by-constant, the parties must use their additive
shares of ∆ as well. Conceptually, they locally update x 7→ x + c and
locally update ∆x 7→ ∆x + ∆c. This is illustrated in Figure 6.3.

Generating SPDZ shares. Since SPDZ shares satisfy the properties needed
for abstract Beaver-triple-based secure computation, the only question remains

6.7. Authenticated Garbling 121

sharing P1 has P2 has sum of P1 and P2 shares
[x] x1 x2 x

t1 t2 ∆x
[x + c] x1 + c x2 x + c

t1 + ∆1c t2 + ∆2c ∆(x + c)

Figure 6.3: SPDZ authenticated secret sharing.

how to generate Beaver triples in the SPDZ format. The paper that initially
introduced SPDZ (Damgård et al., 2012b) proposed a method involving
somewhat homomorphic encryption. Followup work suggests alternative
techniques based on efficient OT extension (Keller et al., 2016).

6.7 Authenticated Garbling

Wang et al. (2017b) introduced an authenticated garbling technique for
multiparty secure computation that combines aspects of information-theoretic
protocols (e.g., authenticated shares and Beaver triples) and computational
protocols (e.g., garbled circuits and BMR circuit generation). For simplicity,
we describe their protocol in the two-party setting but many (not all) of the
techniques generalize readily to the multi-party setting (Wang et al., 2017c).

A different perspective on authenticated shares of bits. One starting
point is the BDOZ method for authenticated secret-sharing of bits. Recall that
a 2-party BDOZ sharing [x] corresponds to the following information:

sharing P1 has P2 has
[x] x1 x2

K1 K2
T1 = K2 ⊕ x1∆2 T2 = K1 ⊕ x2∆1

Since we consider x, x1, x2 to be bits, the underlying field is F = GF(2κ) and
we write the field addition operation as ⊕. An interesting observation is that:

(K1 ⊕ x1∆1)︸ ︷︷ ︸
known to P1

⊕ (K1 ⊕ x2∆1)︸ ︷︷ ︸
known to P2

= (x1 ⊕ x2)∆1 = x∆1

122 Malicious Security

Hence, a side-effect of a BDOZ sharing [x] is that parties hold additive shares
of x∆1, where ∆1 is P1’s global MAC key.

Distributed garbling. Consider a garbled circuit in which the garbler P1
chooses wire labels k0

i , k1
i for each wire i. Departing from the notation from

Section 3.1.2, we will let the superscript b in kb
i denote the public “point-and-

permute” pointer bit of a wire label (that the evaluator learns), rather than its
semantic value true/false. We let pi denote the corresponding pointer bit, so
that kpi

i is the label representing false.
We focus on a single AND gate with input wires a, b and output wire c.

Translating the standard garbled circuit construction into this perspective (i.e.,
organized according to the pointer bits), we obtain the following garbled table:

e0,0 = H(k0
a‖k0

b) ⊕ kpc ⊕pa ·pb
c

e0,1 = H(k0
a‖k1

b) ⊕ kpc ⊕pa ·pb
c

e1,0 = H(k1
a‖k0

b) ⊕ kpc ⊕pa ·pb
c

e1,1 = H(k1
a‖k1

b) ⊕ kpc ⊕pa ·pb
c

Using FreeXOR, k1
i = k0

i ⊕ ∆ for some global value ∆. In that case, we can
rewrite the garbled table as:

e0,0 = H(k0
a‖k0

b) ⊕ k0
c ⊕ (pc ⊕ pa · pb)∆

e0,1 = H(k0
a‖k1

b) ⊕ k0
c ⊕ (pc ⊕ pa · pb)∆

e1,0 = H(k1
a‖k0

b) ⊕ k0
c ⊕ (pc ⊕ pa · pb)∆

e1,1 = H(k1
a‖k1

b) ⊕ k0
c ⊕ (pc ⊕ pa · pb)∆

One of themain ideas in authenticated garbling is for the parties to construct
such garbled gates in a somewhat distributed fashion, in such a way that neither
party knows the pi permute bits.

Instead, suppose the parties only have BDOZ sharings of the form
[pa], [pb], [pa · pb], [pc], where neither party knows these pi values in the
clear. Suppose further that P1 chooses the garbled circuit’s wire labels so
that ∆ = ∆1 (i.e., its global MAC key from BDOZ). The parties therefore
have additive shares of pa∆, pb∆, and so on. They can use the homomorphic
properties of additive secret sharing to locally obtain shares of (pc ⊕ pa · pb)∆,
(pc ⊕ pa · pb)∆, and so on.

6.7. Authenticated Garbling 123

Focusing on the first ciphertext in the garbled table, we can see:

e0,0 = H(k0
a‖k0

b) ⊕ k0
c︸ ︷︷ ︸

known to P1

⊕ (pc ⊕ pa · pb)∆︸ ︷︷ ︸
parties have additive shares

Hence, using only local computation (P1 simply adds the appropriate value to
its share), parties can obtain additive shares of e0,0 and all other rows in the
garbled table.

In summary, the distributed garbling procedure works by generating BDOZ-
authenticated shares of random permute bits [pi] for every wire in the circuit,
along with Beaver triples [pa], [pb], [pa · pb] for every AND gate in the circuit.
Then, using only local computation, the parties can obtain additive shares of a
garbled circuit that uses the pi values as its permute bits. P1 sends its shares of
the garbled circuit to P2, who can open it and evaluate.

Authenticating the garbling. As in Yao’s protocol, the garbler P1 can cheat
and generate an incorrect garbled circuit — in this case, by sending incorrect
additive shares. For example, P1 can replace the “correct” e0,0 value in some
gate by an incorrect value, while leaving the other three values intact. In this
situation, P2 obtains an incorrect wire label whenever the logical input to this
gate is (pa, pb). Even assuming P2 can detect this condition and abort, this
leads to a selective abort attack for a standard garbled circuit. By observing
whether P2 aborts, P1 learns whether the input to this gate was (pa, pb).

However, this is not actually a problem for distributed garbling. While it is
still true that P2 aborts if and only if the input to this gate was (pa, pb), P1 has
no information about pa, pb — hiding these permute bits from P1 causes P2’s
abort probability to be input-independent!

Constructing a garbled circuit with secret permute bits addresses the
problem of privacy against a corrupt P1. However, P1 may still break the
correctness of the computation. For instance, P1 may act in a way that flips one
of the pc ⊕ pa · pb bits. To address this, Wang et al. (2017b) relies on the fact
that the parties have BDOZ sharings of the pi indicator bits. These sharings
determine the “correct” pointer bits that P2 should see. For example, if the
input wires to an AND gate have pointer bits (0, 0) then the correct pointer bit
for the output wire is pc ⊕ pa · pb. To ensure correctness of the computation, it
suffices to ensure that P2 always receives the correct pointer bits. As discussed

124 Malicious Security

previously, the parties can obtain authenticated BDOZ sharings of pc ⊕ pa · pb.
We therefore augment the garbled circuit so that each ciphertext contains not
only the output wire label, but also P1’s authenticated BDOZ share of the
“correct” pointer bit. The BDOZ authentication ensures that P1 cannot cause
P2 to view pointer bits that are inconsistent with the secret pi values, without
aborting the protocol. Now as P2 evaluates the garbled circuit, it checks for
each gate that the visible pointer bit is authenticated by the associated MAC.

This protocol provided dramatic cost improvements. Wang et al. (2017b)
reports on experiments using authenticated garbling to execute malicious
secure protocols over both local and wide area networks. In a LAN setting, it
can execute over 800,000 AND gates per second and perform a single private
AES encryption in 16.6 ms (of which 0.93 ms is online cost) on a 10Gbps LAN
and 1.4 s on a WAN (77 ms is online cost). In a batched setting where 1024
AES encryptions are done, the amortized total cost per private encryption drops
to 6.66 ms (113 ms in a WAN). As a measure of the remarkable improvement
in MPC execution, the fastest AES execution as a semi-honest LAN protocol
in 2010 was 3300 ms total time (Henecka et al., 2010), so in a matter of eight
years the time required to execute a malicious secure protocol dropped to
approximately 1

200 that of the best semi-honest protocol!

6.8 Further Reading

Cut-and-choose existed as a folklore technique in the cryptographic literature.
Different cut-and-choosemechanisms were proposed byMohassel and Franklin
(2006) and Kiraz and Schoenmakers (2006), but without security proofs. The
first cut-and-choose protocol for 2PC with a complete security proof was due
to Lindell and Pinkas (2007).

We presented one technique from Lindell and Pinkas (2007) for dealing
with the selective abort attacks. The subtle nature of selective abort attacks was
first observed by Kiraz and Schoenmakers (2006), and fixed using a different
technique — in that work, by modifying the oblivious transfers into a variant
called committed OT.

We presented one technique for the problem of input consistency in cut-
and-choose (from shelat and Shen (2011)). Many other input-consistency
mechanisms have been proposed including Lindell and Pinkas (2007), Lindell
and Pinkas (2011), Mohassel and Riva (2013), and shelat and Shen (2013).

6.8. Further Reading 125

We described the BDOZ and SPDZ approaches to authenticated secret-
sharing. Other efficient approaches include Damgård and Zakarias (2013)
and Damgård et al. (2017). Various approaches for efficiently generating the
authenticated shares needed for the SPDZ approach are discussed by Keller
et al. (2016) and Keller et al. (2018).

The GMW paradigm transforms a semi-honest-secure protocol into a
malicious-secure one. However, it generally does not result in a protocol with
practical efficiency. This is due to the fact that it treats the semi-honest-secure
protocol in a non-black-box way — the parties must prove (in zero knowledge)
statements about the next-message function of the semi-honest-secure protocol,
which in the general case requires expressing that function as a circuit. Jarecki
and Shmatikov (2007) propose a malicious variant of Yao’s protocol that is
similar in spirit to the GMW paradigm, in the sense that the garbling party
proves correctness of each garbled gate (although at a cost of public-key
operations for each gate).

A black-box approach for transforming a semi-honest-secure protocol into
a malicious-secure one (Ishai et al., 2007; Ishai et al., 2008) is known as “MPC
in the head”. The idea is for the actual parties to imagine a protocol interaction
among “virtual” parties. Instead of running an MPC protocol for the desired
functionality, the actual parties run an MPC that realizes the behavior of the
virtual parties. However, the MPC that is used to simulate the virtual parties
can satisfy a weaker security notion (than what the overall MPC-in-the-head
approach achieves), and the protocol being run among the virtual parties needs
to be only semi-honest secure. For the special case of zero-knowledge proofs,
the MPC-in-the-head approach results in protocols that are among the most
efficient known (Giacomelli et al., 2016; Chase et al., 2017; Ames et al., 2017;
Katz et al., 2018).

