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What is Zero-Knowlec

@ Completeness: if the statement is true, a prover can convince
an honest verifier that the statement is true

@ Soundness: if the statement is false, a prover can convince an
honest verifier to accept this fact with negligible probability

@ Zero-knowledge: if the statement is true, no verifier can learn
anything, except the fact that the statement is true

&
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How to Show a Proof

@ Similar to the read-ideal paradigm
@ There exists a simulator for any verifier,

e given only the statement to be proved
e it can produce view indistinguishable from an interaction
between the honest prover and the verifier
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o _
Graph 3-Coloring
3-Colorable Graph

Definition

A graph G = (V, E) is 3-colorable if V can be colored with three
different colors, such that for any two vertices v; and v; connected via
an edge ej;, Color(v;) # Color(vj)

Key Facts

@ If G 3-colorable, permuting its three colors results another
valid 3-coloring

@ If G not 3-colorable, there exists at least a pair of adjacent
vertices having the same color

@ Graph 3-coloring is a NP-Complete problem

[m] [ =
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o _
Graph 3-Coloring
ZK-Proof for Graph 3

@ Public input:

e G=(V,E)
@ H: a secure commitment function

@ Private input:

e Prover: w, a 3-coloring of G
o Verifier: |

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001



o _
Graph 3-Coloring
ZK-Proof for Graph 3

© Prover:

e randomly permute the 3 colors of w to produce w’
e send H(w’) to the verifier, where
H(w") = {H(v;, Color(v))|Vi,v; € V}

@ Verifier:

e randomly select g; € E (or (/,)) € E)
e send g; or (/,j) to the prover

© Prover: send (v;, Color(Vv;)) and (v;, Color(v})) to the verifier

© Verifier: if the commitments can be verified and
Color(v;) # Color(V;), return accept; otherwise, return reject

&
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o _
Graph 3-Coloring
ZK-Proof for Graph 3

@ Completeness: if w is a valid 3-coloring of G, an honest verifier
will always return accept

@ Soundness:

e if wis not a valid 3-coloring, the probability that an honest

verifier returns accept is bounded by ‘E\E orl1— I%I

e the above probability is also called soundness error

&
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o _
Graph 3-Coloring
Making the Soundnes

@ The previous proof is not very sound:

e the accept probability or the soundness error 1 — ‘%‘ is too

high when w is not a valid 3-coloring
e how to make the soundness error negligible?
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o _
Graph 3-Coloring
Making the Soundnes

@ Run the above proof n|E| times independently

@ The verifier returns accept if all n|E| executions returns accept

;1 ”‘E‘<1
e <

using the following inequality: (1 + x)t < e for any real number
x and t with ¢t > 0

@ Soundness error:
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o _
Graph 3-Coloring
Zero Knowledge

@ To prove the previous proof is zero-knowledge, we need to build
a simulator S

@ Based on the public information, S generates a simulated view
of the interaction between a prover (P) and a verifier (V)

@ [f the simulated view is computationally indistinguishable from
the real interaction or execution of the proof, the proof is
zero-knowledge when V is computationally bounded
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o _
Graph 3-Coloring
Zero Knowledge - the S

Simulator for graph 3-coloring

@ S randomly chooses an edge e; € E and colors v; and v; with
different colors, and colors the rest the same color to produce w.
Then S commits W, denoted by H(w)

@ Ssimulates V using H(W), and receives (i’ '), the first
message V sends

e If (i,j) = (/',j'), then S can honestly answer the query and
simulate the rest of the protocol, and outputs the transcript:

Viewg = {H(W), (v;, Color(V;)), (v;, Color(v})), accept}

o If (i,j) # (i',)), then S restarts from the beginning with a
newly chosen (/. )

[m] [ =
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o _
Graph 3-Coloring
Zero Knowledge - the

@ Note that Prob((i,j) = (/")) ~ |1?| since the selection of (i, )
is only based on the commitments, which cannot bias the
decision due to the hiding property

@ Thus, S succeeds with probability about 1/|E|, and the expected
number of iterations to terminate is |E]|
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o _
Graph 3-Coloring
Zero Knowledge - Re

@ view, = {H(W’), (v;, Color(v;)), (v;, Color(V;)), accept}
@ viewg = {H(W), (v;, Color(v;)*), (vj, Color(v;)*), accept }
@ View, and Viewg are computationally indistinguishable:

e H(w') and H(W) are computationally indistinguishable due
to the hiding property of H

@ (Color(v;), Color(v;)), and (Color(v;)*, Color(v;)*) are
identically distributed since the colors are randomly
permuted for each execution of the proof
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Zero-Knowledge Proofs
Hamiltonian Cycle
Hamiltonian Cycle

@ Given a graph G = (V, E), a Hamiltonian cycle includes every
vertex v; € V exactly once

@ The problem of finding a Hamiltonian cycle in G is known to be
NP-Complete
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Zero-Knowledge Proofs
ZK-Proof for Hamilto

@ Public information: G is known to both Alice and Bob
@ Private inputs:

e Alice: C C E a Hamiltonian cycle in G
e Bob: |

@ ZK-proof: Alice proves to Bob that she knows C without
disclosing any information about it to Bob
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Zero-Knowledge Proofs
ZK-Proof for Hamilto

@ Alice chooses a random permutation (on the vertices of G):
m(G) — G, and sends H(G') and H(r), the commitments of G
and 7, to Bob

@ Bob randomly chooses b € {0, 1}, and sends it to Alice
@ Alice performs the following, based on the challenge b:

@ b=0:0pen G’ and 7
e b=1: compute C’' + =(C) and open only the
commitments related to C’
© Bob returns accept if either verification below succeeds:

e b = 0: verify the commitments and check if G’ = 7(G)
e b = 1: verify the commitments related to C’ and check if C’
is a Hamiltonian cycle @
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Zero-Knowledge Proofs
Hamiltonian Cycle
Completeness

@ If Alice does know a Hamiltonian cycle in G, she can easily
satisfy Bob’s either challenge:

e the graph isomorphic mapping = producing G’ from G, or
@ a Hamiltonian cycle C’ in G’ produced based on =
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Zero-Knowledge Proofs
Hamiltonian Cycle
Soundness

@ If Alice does not know C, she can guess which question Bob will
ask to generate either

@ a graph isomorphic to G, or
@ a Hamiltonian cycle for an unrelated graph

@ However, since she does not know a Hamiltonian cycle for G,
she cannot do both

@ Soundness error: 3

@ Similar to graph 3-coloring, the soundness error can be reduced
to 4 by executing the proof n times
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Zero-Knowledge Proofs
Hamiltonian Cycle
Soundness

@ Conversely, if Alice has prior knowledge about the challenge bit
b, she can fool Bob without knowing a valid C

@ If Alice knew b = 0, she would commit to an arbitrary
permutation 7(G) and still pass the challenge

@ If Alice knew b = 1, she would commit to a complete graph with
|G| vertices not a permutation of G, and she would then reveal
any arbitrary Hamiltonian cycle on the complete graph to Bob
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Zero-Knowledge Proofs
Hamiltonian Cycle
Zero Knowledge

@ Alice’s answers do not reveal the original Hamiltonian cycle C

e Each round, Bob only learns G’ is isomorphic to G or a
Hamiltonian cycle in G’

e He would need both answers for a single G’ to discover the
cycle Cin G

@ Thus, C remains unknown as long as Alice can generate a
distinct G’ every round
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Zero-Knowledge Proofs
Hamiltonian Cycle
Zero Knowledge

@ Prove there exists a probabilistic-polynomial time (PPT)
simulator S for every PPT malicious verifier V* such that

e the output distribution of the interaction between S and
each V* is computationally indistinguishable from that of
the interaction between each V* and an honest prover P

@ S predicts the challenge bit b” and commits either to a valid
graph permutation or the complete graph with |G| vertices with a
trivial Hamiltonian cycle

@ [f the predicted challenge bit matches the actual challenge bit
b’ = b, then S proceeds by successfully responding to the
challenge; otherwise, S rewinds the transcript and tries again
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Zero-Knowledge Proofs
Simulator Complexity

@ The probability of guessing b’ correctly is %
@ Thus, the expected number of iterations is 2

@ In other words, the simulator runs in expected polynomial time
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Compmations Sha Zp _
Outline

e Computations over Z,
@ The Greatest Common Divisor
@ Group and Field
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| :
Computations over Zp
Division Theorem

Theorem (Division Algorithm)

If a and b are integers such that b > 0, then there are unique integers
g and r such thata= bq+r, where0 <r<b

&
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Linear Combination

Definition (Linear Combination)

If aand b are integers, then a linear combination of aand b is a sum
of the form ax + by, where both x and y are integers

Example
@ What are the linear combinations of 9x + 15y?
-3=9-(-2)+15-1
0=9-0+15-0
3=9.-2+15-(-1)

It can be shown that the set of all linear combinations of 9 and
15is {...,—12,-9,-6,-3,0,3,6,9,12,...}

[m] [ =
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The Greatest Common

Definition (Greatest Common Divisor)

The greatest common divisor (gcd) of two integers a and b, not both
zero, is the largest of the common divisors of a and b

Theorem (GCD as a Linear Combination)

The greatest common divisor of the integers a and b, not both 0, is
the least positive integer that is a linear combination of a and b
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Some Facts related tc

@ Fact1: dlaand d|b = d|(am + bn)
@ Fact2: dlaand d|b = d|gcd(a, b)
@ Fact 3: gcd(0,0) = 0 and gecd(a,0) = |g

&
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The Euclidean Algorit

Theorem

For any non-negative integer a and any positive integer b,
gcd(a, b) = ged(b, @ mod b)

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001



Computations over 7 The Greatest Common Divisor
putat Ver Zp Group and Field

Algorithm 1 Euclid(a, b)
Require: a and b are non-negative integers
if b =0 then
return a
: else
return Euclid(b, a mod b)
: end if

LA R\

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001



Find the gcd of 30 an

@ First we use the division theorem to write:

72=2-30+12

@ The Euclidean theorem tells us that

ged(72,30) = gcd(30,72 mod 30) = ged(30, 12)
30 = 2-12+6

gcd(30,12) = ged(12,30 mod 12) = ged(12, 6)
12 = 2.6+0

ged(12,6) = gcd(6,12 mod 6) = gcd(6,0) =6

Q@ gcd(72,30) =6

&
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The Extended Euclidea

Find the GCD of 801 and 154

801 = 5-154+31 (1)
154 = 4.31+30 )
31 = 1.30+1 3)
30 = 30-1+0 (4)
1 = 1-140 (5)

@ gcd(801,154) = ged(1,0) = 1

[m] (= =
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. . The Greatest Common Divisor
Computations over Zp

The Extended Euclidea

Find the linear combination of gcd(801,154) =801 - x + 154 - y
@ Starting with the GCD based Equation (5):
1=1.-140-0

(g=1.x=1y=0)
@ Replace 0 in the above according to Equation (4):
1=30-0+1-1

(9=
@ Replace 1 in the above according to Equation (3):
1=31-14+30-(-1)

(g=1,x=1,y=-1)
@ Replace 30 in the above according to Equation (2):
1=154.(-1)+31:-5

1,x =

(9=
@ Replace 31 in the above according to Equation (1):

-1,y =5)
1=2801-5+154-(—26)

(g=1,x=5y = —26)

v
F

[m] = = = ¥
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The Extended Euclid

@ The algorithm terminates with b = 0 and a = g; thus, from these
parameters, the linear combination forgisg=g-1+0-0

@ Starting from these coefficients (x, y) = (1,0), we can go
backwards up the recursive calls

@ We need to figure out how the coefficients x and y change
during the transition from (&, b) to (b, a mod b)

&
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. . The Greatest Common Divisor
Computations over Zp

The Extended Euclide

@ Assuming we found the coefficients (x’, y’) for (b, a mod b)
g=b-x"+(amod b) -y’

@ We want to find the pair (x, y) for (a, b):
g=ax+b-y

@ We can represent a mod b as:
amodb=a— |2|-b

@ Replacing this in the coefficient equation for (x’, y’) gives:
g=b-x'+(amodb)-y =b-x'+(a—[2|-b)-y

&
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. . The Greatest Common Divisor
Computations over Zp

The Extended Euclide

@ After rearranging and combining the terms, we have:
g=ay+b (xX-y-|[§])
@ As a result, the values of x and y are:

x=y
y=x-y 3]

&
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The Extended Euclid

Algorithm 2 Extended_Euclid(a, b)
Require: a and b are non-negative integers

1: if b= 0 then

2:  return(a,1,0)

3: else
4. (9',x',y") = Extended_Euclid(b, a mod b)
5 (9.x,y)=(9.y,x"—a/bly’)
6
7

return (g, x, y)
: end if

&
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Group Definition

A set of objects G along with a binary operation (e) is called a group if
the following four properties hold:

@ Closure: lfa,bec G,thenc=aebec G
@ Associativity: (aeb)ec=ae(bec)

@ Identity element: There exists a unique element e in G, such
that for every a € G, we have aee =ecea=a

@ Inverse: For every a € G, there exists b € Gsuchthataeb = ¢

A group is commutative or abelian if for any two elements a, b € G,
we have aeb=bea

&
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Group Examples

@ Integers Z is a group under addition (+), and real numbers R
with either addition (+) or multiplication (x) operation is a group

@ Z,={0,1,...,n— 1} with addition modulo n (+, modn) is a
group where nis a positive integer:

@ a,be Z, thenc=a+ bmod nis also in Z,
e The identity element is 0, and the inverse of ais n — a
@ 7,15 € Z1g,then 7 + 15 mod 16 = 6
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Group Examples

® 75 ={1,...,p— 1} with multiplication modulo p (x, modp) is a
group where p is a prime:

° a,bezg,then c=axbmodpisalsoin Z;;
o The identity element is 1

@ Given a € 2], find the inverse of a (denoted by a'):

° gcd(a,p)=a-x+p-y
e a'=xmodp

&
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Compmations Sha Zp
Ring and Field

Definition (Ring)
A ring is a set of elements with two binary operations, addition (+)
and multiplication (x):

@ It is an abelian group with identify element 0 under addition

@ Its multiplication is associative a x (b x ¢) = (a x b) x ¢ and

distributive over addition a x (b+c¢) =ax b+ a x c and
(b+c)xa=bxa+cxa

A ring is commutative if a x b = b x a for every aand b
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Compmations Sher Zp
Ring and Field

Definition (Field)

Aring is called a field if its elements, except for 0, form a
commutative group under x

@ Zp=1{0,1,...,p— 1} with (+, modp ) and (x, modp) is a field
where pis a prime:

@ The identity element is 0 under (+, modp )
e The identity element is 1 under (x, modp)

&
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Outline

e Secret Sharing
@ Additive Secret Sharing
@ Shamir Secret Sharing
@ Secure Comparison
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Additive Secret Sharing
Common Notations

@ Z,={0,1,...,n—1}
@ P;: a participating party indexed by i € {1,..., m}

@ [v]={[v]',...,[v]"}: avalue v € Z, is secretly shared among
the parties where [v]' (1 < i < m) is the share held by P;

@ [v];={[v]{,...,[v]"}: avalue v is secretly shared using a
t-degree polynomial over a finite field among the parties

&
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Additive Secret Sharing
Secret Sharing in Z,

@ Suppose there are two parties Py and P,, and each has a
private value « and g in Z, respectively

@ To secretly share « € Z,, between P; and P, Py performs the
following steps:

e randomly select r from Z,
e set[a]' =rand[a]®=a—rmodn
e send [o]? to P,

@ (3 can be secretly shared similarly by P»
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Additive Secret Sharing
Secure Addition [a +

@ To derive [« + ], each party adds its local shares; that is,

@ Pi:fa+ 8] < [a]' + [8] mod n
@ Py [a+ B)? < [a)? + [B]? mod n

@ We will omit the modn operation where the context is clear

&
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Additive Secret Sharing
Secret Sharing _
Result [c - o]

@ C € Zy (or in Zp) is known to both parties

@ To derive [c- a], each party multiplies its local shares of « with c:

e Pi:[c-a]' «c-[o]
@ Pfc-alP«+c-[a]?

&
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Additive Secret Sharing
Secure Multiplication

@ Suppose x = a+ uand v = S+ v, and we have
XY = af + va+ uB + uv

@ Itis easy to see that
aff = xvy— xV—~yUu+uv

@ We perform multiplication of a3 based on x, v, uand v

&
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Additive Secret Sharing
Secure Multiplication

@ To compute [af], we follow the relation below:

(8] = xy—xVI" = u]' + [w]’
[as)? = —x[VI? = ~[u]® + [uv]?

@ This implies that if both Py and P, know x;, v, [u], [v] and [uv],
then they can derive [a/5]

@ ([u],[v],[uv]) is called a Beaver triple

&
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Additive Secret Sharing
Secure Multiplication

@ To compute [«f], we need an additional party Ps

@ The purpose of using Ps is to generate the Beaver triple
([u], [v], [uv]) shared between Py and P»

@ From [u] and [v], P; and P, can collaboratively derive x and ~

@ Then [a] can be easily derived by both parties as shown earlier

&
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Additive Secret Sharing
Secure Multiplication

o InpUt: <P1 5 [01]1 ) [ﬂ]1>7 <P27 [a]Z’ [5]2>7 <P3, J->
@ Output: (Py, [e8]"), (P2, [a5]?)
@ Domain: Zp

&
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Additive Secret Sharing
Secure Multiplication

@ Ps //generate Beaver triples and send shares to Py and P

@ randomly choose u and v from Z, and generate the shares
([u]', [u]?), ([v]', [v]?) and ([uv]", [uv]?)
@ send [u]',[v]",[uv]" to Py and [u]?, [v]?, [uv]? to P,

© P, //generate P;’s shares of [x] and [y] and send them to P,

Q@ '« [o]' +[u]' and [7]" « [B]' + [v]'
@ send[x]'and [7]" to P>

© P //generate Py’s shares of [x] and [y] and send them to P;

Q@ [XJ? « [af® + [u]? and [7]? « [B]* + [v]?
@ send [x]? and [y]? to P4

&
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Additive Secret Sharing
Secure Multiplication

© Py //reconstruct y and v and derive Py’s share of [af]

@ x« '+ [xPandy « [1]' + [?
@ [af]" + xv— xIv]" = 4[u]" + [uv]!

@ P. //reconstruct y and vy and derive Ps’s share of [a/]

@ x« '+ IxPandy « [1]' + [
@ [0 + —x[V]* — y[u]? + [uv]?

&
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Secret Sharing
Important Properties

Two fundamental properties of polynomial
@ A non-zero polynomial of degree t has at most t roots

@ Given t+ 1 pairs (X1, 1), .-, (X1, Yer1), with all the x; distinct,
there is a unique polynomial 6(x) of degree (at most) ¢t such that
O(x))=yfor1 <i<t+1

&
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Secret Sharing
Lagrange Interpolatio

@ Given t + 1 pairs (x1, 1), - - -, (Xt1, Yt+1), With all the x; distinct,
construct a polynomial 6(x) such that 6(x;) = y;for 1 <i<t+1

@ Let consider a simpler problem first:
@ Suppose yy =1andy;=0for2 << t+1,whatis 6(x)?

&
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Secret Sharing
Lagrange Interpolatio

@ Let g(x) = (x — x2)(x — X3) - - - (X — X¢+1): @ polynomial of degree
t (the x;’'s are constants, and x appears t times)

e We have g(x;) =0,for2 <i<t+1
® q(x1) = (X1 — X2)(X1 — X3) - - - (Xy — X¢+1), Which is some
constant not equal to 0

@ Thus, we have 6(x) = q(x)/q(x1)

&
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Secret Sharing
Lagrange Interpolatio

@ Let generalize the previous problem to any arbitrary index i:
yi=1landy,=0forallj#i

@ Define d;(x) the degree t polynomial that goes through these
t + 1 points:

5[()() _ |_|j75,'(X — Xl)

Mjzi(Xi — X))

@ ltis easy to verify that

i = 6i(x)=1
Y 6i(x) =0,vj # i

&
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Secret Sharing
Lagrange Interpolatio

Given t + 1 points (X1, 1), - - ., (Xt+1, Yer1) Where x;’s are distinct, find
a t-degree polynomial f(x) going through these points:

@ Construct the t + 1 polynomials: §1(x), ..., d41(x)
Q 0(x) = X1 yidi(x)

&
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Secret Sharing
Polynomial over a Fi

@ Suppose the finite field is Z,

@ The coefficients of §(x) and all operations (e.g., addition,
multiplication) are in Z,

@ The two important properties of polynomial still hold as well as
the Lagrange Interpolation:

5/,()() _ n/#’(x — X/)

= = 6i(x) = Mizi(x—x)(Mi2i(Xx;— X)) ™" mod
i (X; — X;) i(X) = Mz (X =x3) (M2 (% — X)) p

where (M;i(x; — x;)) " is the multiplicative inverse of
Mji(Xi — ;) In Zp
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Secret Sharing
Shamir Secret Sharin

@ When discussing additive secret sharing, we assumed each
party has a private value and wants to secretly share it with the
other party

@ There are many variations of how a value is secretly shared
among the participating parties

@ Here we use another variation to illustrate the Shamir secret
sharing scheme

&
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Secret Sharing
Shamir Secret Sharin

@ Suppose there is a dealer who wants to secretly share « and g
among m parties Py, ..., Pn

@ In practice, the dealer could be one of the parties and secretly
shares its private input for the subsequent MPC

&
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Secret Sharing
Shamir Secret Sharin

@ The dealer randomly generates two t-degree polynomials in Zp:

@ O,(x)=ax!+a_1x="+---+ ax+amodp
@ 05(x) = bxt + br_1x'=' + .-+ byx+ B mod p

@ Note that 6,(0) = o and 03(0) = 8
@ To generate the shares of « and 3, the dealer does the following:

o [a]] = 0 (i) mod p, for 1 < i< m
@ [A]; =0s(/)mod p,for1 <i<m

@ We will omit the modp operation where the context is clear

@ The dealer sends [«]} and [3]; to P;

&
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Secret Sharing
Share Reconstructio

@ To discover the original values « and 3, at least t + 1 parties
need to pool their shares together

@ Suppose P;,..., P, , are t + 1 parties with shares

[af,....[al"* where ji,....jrs € {1,...,m}and t < 2

@ These parties can share their shares, and each can local
reconstruct the polynomial ¢, (x) using Lagrange interpolation

on the t + 1 points: (ji, [a]}), . .., (w1, [o]f*)

@ Then compute 6,(0) to retrieve «, and 5 can be derived similarly

&
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Secret Sharing
Secure Addition [a +

@ To derive [a + f];, each party adds its local shares; that is,
P [a + Bl « [ali + [8;
@ This works because adding the two local points (on the
y-coordinates) giving a point (i, [ + £]') on 044 5(X):

Ooip(X) = BalX)+05(x)
= (a+b)Xx"+ -+ (ar+bi)x+ (a+B)

@ As discussed previously, the parties need to have at least ¢ + 1
points (ji, [+ B11), . .., (r1, [a + BIE) to reconstruct 6,4 5(X)

o To retrieve a.+ 3, set 0,+5(0) = a+ 3

&
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Secret Sharing
Secure Multiplication k&
Result [c - a;

@ c € Zy (orin Zp) is known to all parties

@ To derive [c - a];, P; multiplies its local shares of a with c:
e Pilc-ali <« c-[a]}

@ This works because multiplying the local point (on the
y-coordinates) with ¢ giving a point (i, [¢ - a]}) on O¢..(X):

Oca(X) = C-04(x)
= (c-at)x’+-~-—|—(c~a1)x—|-(c-a)

&
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Secret Sharing
Secure Multiplication

@ If the parties need to perform this multiplication once, then they
can just simply multiple their local shares to produce a valid
point (i, [«f]}) on Hgﬁ(x)

@ Since 0/, 5(x) has a degree of 2t and ¢ < 7, we cannot use these
shares to perform additional secure multiplications

@ Otherwise, the original values cannot be retrieved due to the
degree of the polynomials (resulting from these additional
secure multiplications) would be equal to or greater than m

@ Key challenge: after each multiplication, transform 6, ;(x) a
2t-degree polynomial to 6,5(x) a t-degree polynomial
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Secret Sharing
Secure Multiplication

@ To compute [af]; and solve the previously mentioned technical
challenge, there are several protocols

@ In what follows, we present an efficient protocol (based on
DNO07) under the semi-honest adversary model

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001



Secret Sharing
Secure Multiplication

@ Each party locally multiplies its shares resulting a point on
gﬁ(x), and obliviously randomizes it using [r]2; to produce a
pointon 0/ ;. .(x)

af+r
@ ris arandom value in Zp, not known to the parties
@ Then each party sends its randomized point (on 0hp4r(x)) toa

designated party, say P4

© P, performs Lagrange interpolation on 2t + 1 points to retrieve
af + r and sends it to the other parties

© Each party subtracts the randomness to obtain a point on 6,5(x)

&
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Secret Sharing
Secure Multiplication

@ Input: (P[]}, [B]}), for 1 < i< m
@ Output: (P, [aB]}), for1 <i<m

@ Domain: Zpand 1 <t < 7%

&
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Secret Sharing
Secure Multiplication

Q P, for1<i<m:

e Randomly generate r; from Z, and use Shamir secret
sharing to secretly share r; with a random 2¢-degree
polynomial and a random t-degree polynomial

e At the end of the previous step, the party has
e L e ) |

o Derive [r]y; « [r]b + - - + [rm]b, @and [r]} <= [A]; 4 - - + [

o Derive [af + r]b; + [a] [6], + [r]5; and send it to P1

&
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Secret Sharing
Secure Multiplication

(2

e Reconstruct ¢/, 5, ,(x) based on 2t + 1 pairs of (i, [af + rls,)

(%

e Derive ap +r < 0,5, ,(0) and generate a random t-degree

polynomial Oop+r tO secretly share af + r
e Send [af + r]; to P;
Q P,for1<i<m:
e Derive [af]} + [aB + r]} — [r]}

&
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Comparison Circuit

@ Suppose we compare « and 3, and both are four-bit numbers

° a = (as,ap, a1, a0)

® = (f3, P2, 01, P0)

@ a3 and f3 indicate the most significant bits of « and g

&
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Comparison Circuit

@ Compute the bitwise xor of « and

@ a3 =a3®f3
@ a=02® 3
@ a;=a1 DBy
@ ay=ap®d B

@ Let j be the most significant bit location where o; # 3;, set
b3:O,...7bj+1 :Oandbj:1,...7bo:1

e by =a3

@ bb=a>V bs
@ by =a Vb
@ by =ag V by
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Comparison Circuit

© Let j be the most significant bit location where «; # 3;, set ¢j = 1
and ¢; = 0 where j #

(] Cg=b3

@ Co=b® b3
@ Ci=b1 ® b
@ Cy = by ® by

© Multiple ¢ and « bitwise

@ 0z =C3 N\ a3
@ b =0C ANAas
e di=c0CiNap
@ dy = Cy N\ oy

&
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Comparison Circuit

@ Derive the comparison result

@ =0V ads
e eg=0,Ve
@ 6 =0y Ve

&

Wei Jiang - http://faculty.missouri.edu/wjiang/ CMP_SC 8001



Comparison Circuit

Key Obervation
The comparison result is stored in eg

Qeg=1—>a>p0
@ eg=0—>a<p
Compute @, vV and A in terms of —, + and x
@ XBYy=Xx+y—2xy
@ XVYy=x+y—xy
@ XAy =xy

Since we know how to compute —, + and x securely, we can
evaluate the comparison circuit securely
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Comparison Circuit

Secure Implementation of Step 1 of the Boolean Circuit
Q@ a=0,%p0
Q@ ai = a;+ B — 2a;B
The main steps with inputs [«;] and [3]]
@ [wi3]] + Secure_Multiplication([as], [5])
Q (20,3 + 2[if]
Q [a] « [ai] +[B] - [20iB)]

&
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