
A Pragmatic Introduction to
Secure Multi-Party Computation

David Evans
University of Virginia
evans@virginia.edu

Vladimir Kolesnikov
Georgia Institute of Technology

kolesnikov@gatech.edu

Mike Rosulek
Oregon State University

rosulekm@eecs.oregonstate.edu

Boston — Delft

A Pragmatic Introduction to
Secure Multi-Party Computation
David Evans1, Vladimir Kolesnikov2 and Mike Rosulek3

1University of Virginia; evans@virginia.edu
2Georgia Institute of Technology; kolesnikov@gatech.edu
3Oregon State University, rosulekm@eecs.oregonstate.edu

ABSTRACT

Secure multi-party computation (MPC) has evolved from a theo-
retical curiosity in the 1980s to a tool for building real systems
today. Over the past decade, MPC has been one of the most active
research areas in both theoretical and applied cryptography. This
book introduces several important MPC protocols, and surveys
methods for improving the efficiency of privacy-preserving ap-
plications built using MPC. Besides giving a broad overview of
the field and the insights of the main constructions, we overview
the most currently active areas of MPC research and aim to give
readers insights into what problems are practically solvable using
MPC today and how different threat models and assumptions
impact the practicality of different approaches.

David Evans, Vladimir Kolesnikov andMike Rosulek,APragmatic Introduction to SecureMulti-
Party Computation. NOW Publishers, 2018. (This version: June 11, 2022)

Contents

1 Introduction 5

1.1 Outsourced Computation . 6
1.2 Multi-Party Computation . 7
1.3 MPC Applications . 8
1.4 Overview . 14

2 Defining Multi-Party Computation 15

2.1 Notations and Conventions . 15
2.2 Basic Primitives . 17
2.3 Security of Multi-Party Computation 19
2.4 Specific Functionalities of Interest 28
2.5 Further Reading . 31

3 Fundamental MPC Protocols 32

3.1 Yao’s Garbled Circuits Protocol 33
3.2 Goldreich-Micali-Wigderson (GMW) Protocol 37
3.3 BGW protocol . 42
3.4 MPC From Preprocessed Multiplication Triples 44
3.5 Constant-Round Multi-Party Computation: BMR 47
3.6 Information-Theoretic Garbled Circuits 50

3

3.7 Oblivious Transfer . 54
3.8 Custom Protocols . 59
3.9 Further Reading . 63

4 Implementation Techniques 65

4.1 Less Expensive Garbling . 66
4.2 Optimizing Circuits . 74
4.3 Protocol Execution . 79
4.4 Programming Tools . 83
4.5 Further Reading . 85

5 Oblivious Data Structures 87

5.1 Tailored Oblivious Data Structures 88
5.2 RAM-Based MPC . 92
5.3 Tree-Based RAM-MPC . 93
5.4 Square-Root RAM-MPC . 96
5.5 Floram . 98
5.6 Further Reading . 101

6 Malicious Security 102

6.1 Cut-and-Choose . 102
6.2 Input Recovery Technique . 107
6.3 Batched Cut-and-Choose . 109
6.4 Gate-level Cut-and-Choose: LEGO 110
6.5 Zero-Knowledge Proofs . 113
6.6 Authenticated Secret Sharing: BDOZ and SPDZ 116
6.7 Authenticated Garbling . 121
6.8 Further Reading . 124

7 Alternative Threat Models 126

7.1 Honest Majority . 127
7.2 Asymmetric Trust . 131
7.3 Covert Security . 133
7.4 Publicly Verifiable Covert (PVC) Security 137

4

7.5 Reducing Communication in Cut-and-Choose Protocols 141
7.6 Trading Off Leakage for Efficiency 142
7.7 Further Reading . 145

8 Conclusion 148

Acknowledgements 152

References 154

1
Introduction

Secure multi-party computation (MPC) protocols enable a group to jointly
perform a computation without disclosing any participant’s private inputs. The
participants agree on a function to compute, and then can use an MPC protocol
to jointly compute the output of that function on their secret inputs without
revealing them. Since its introduction by Andrew Yao in the 1980s, multi-party
computation has developed from a theoretical curiosity to an important tool
for building large-scale privacy-preserving applications.

This book provides an introduction to multi-party computation for practi-
tioners interested in building privacy-preserving applications and researchers
who want to work in the area. We provide an introduction to the foundations
of MPC and describe the current state of the art. Our goal is to enable readers
to understand what is possible today, and what may be possible in the future,
and to provide a starting point for building applications using MPC and for
developing MPC protocols, implementations, tools, and applications. As such,
we focus on practical aspects, and do not provide formal proofs.

The term secure computation is used to broadly encompass all methods for
performing computation on data while keeping that data secret. A computation
method may also allow participants to confirm the result is indeed the output of
the function on the provided inputs, which is known as verifiable computation.

5

6 Introduction

There are two main types of secure and verifiable computation: outsourced
computation and multi-party computation. Our focus is on multi-party compu-
tation, but first we briefly describe outsourced computation to distinguish it
from multi-party computation.

1.1 Outsourced Computation

In an outsourced computation, one party owns the data and wants to be able to
obtain the result of computation on that data. The second party receives and
stores the data in an encrypted form, performs computation on the encrypted
data, and provides the encrypted results to the data owner, without learning
anything about the input data, intermediate values, or final result. The data
owner can then decrypt the returned results to obtain the output.

Homomorphic encryption allows operations on encrypted data, and is
a natural primitive to implement outsourced computation. With partially-
homomorphic encryption schemes, only certain operations can be performed.
Several efficient partially-homomorphic encryption schemes are known (Pail-
lier, 1999; Naccache and Stern, 1998; Boneh et al., 2005). Systems built on
them are limited to specialized problems that can be framed in terms of the
supported operations.

To provide fully homomorphic encryption (FHE), it is necessary to support
a universal set of operations (e.g., both addition and multiplication, along with
constants 0 and 1) so that any finite function can be computed. Although the
goal of FHE was envisioned by Rivest et al. (1978), it took more than 30
years before the first FHE scheme was proposed by Gentry (2009), building
on lattice-based cryptography. Although there has been much recent interest
in implementing FHE schemes Gentry and Halevi (2011), Halevi and Shoup
(2015), and Chillotti et al. (2016), building secure, deployable, scalable systems
using FHE remains an elusive goal.

In their basic forms, FHE and MPC address different aspects of MPC, and
as such shouldn’t be directly compared. They do, however, provide similar
functionalities, and there are ways to adapt FHE to use multiple keys that
enables multi-party computation using FHE (Asharov et al., 2012; López-
Alt et al., 2012; Mukherjee and Wichs, 2016). FHE offers an asymptotic
communication improvement in comparison with MPC, but at the expense
of computational efficiency. State-of-the-art FHE implementations (Chillotti

1.2. Multi-Party Computation 7

et al., 2017) are thousands of times slower than two-party and multi-party
secure computation in typical applications and settings considered in literature.
Ultimately, the relative performance of FHE and MPC depends on the relative
costs of computation and bandwidth. For high-bandwidth settings, such as
where devices connected within a data center,MPC vastly outperforms FHE. As
FHE techniques improve, and the relative cost of bandwidth over computation
increases, FHE-based techniques may eventually become competitive with
MPC for many applications.

We do not specifically consider outsourcing computation or FHE further
in this book, but note that some of the techniques developed to improve
multi-party computation also apply to FHE and outsourcing. Shan et al. (2017)
provide a survey of work in the area of outsourcing.

1.2 Multi-Party Computation

The goal of secure multi-party computation (MPC) is to enable a group of
independent data owners who do not trust each other or any common third party
to jointly compute a function that depends on all of their private inputs. MPC
differs from outsourced computation in that all of the protocol participants
are data owners who participate in executing a protocol. Chapter 2 provides a
more formal definition of MPC, and introduces the most commonly considered
threat models.

Brief history of MPC. The idea of secure computation was introduced by
Andrew Yao in the early 1980s (Yao, 1982). That paper introduced a general
notion of secure computation, in which m parties want to jointly compute a
function f (x1, x2, . . . , xm) where xi is the ith party’s private input. In a series
of talks over the next few years (but not included in any formal publication),
Yao introduced the Garbled Circuits Protocol which we describe in detail in
Section 3.1. This protocol remains the basis for many of the most efficient
MPC implementations.

Secure computation was primarily of only theoretical interest for the next
twenty years; it was not until the 2000s that algorithmic improvements and
computing costs had reached a point where it became realistic to think about
building practical systems using general-purpose multi-party computation.

8 Introduction

Fairplay (Malkhi et al., 2004) was the first notable implementation of a general-
purpose secure computation system. Fairplay demonstrated the possibility that
a privacy-preserving program could be expressed in a high level language and
compiled to executables that could be run by the data-owning participants as
a multi-party protocol. However, its scalability and performance limited its
use to toy programs — the largest application reported in the Fairplay paper
was computing the median two sorted arrays where each party’s input is ten
16-bit numbers in sorted order, involving execution of 4383 gates and taking
over 7 seconds to execute (with both parties connected over a LAN). Since
then, the speed of MPC protocols has improved by more than five orders
of magnitude due to a combination of cryptographic, protocol, network and
hardware improvements. This enabled MPC applications to scale to a wide
range of interesting and important applications.

Generic and specialized MPC. Yao’s garbled circuits protocol is a generic
protocol—it can be used to compute any discrete function that can be rep-
resented as a fixed-size circuit. One important sub-area of MPC focuses on
specific functionalities, such as private set intersection (PSI). For specific
functionalities, there may be custom protocols that are much more efficient than
the best generic protocols. Specific functionalities can be interesting in their
own right, but also can be natural building blocks for use in other applications.
We focus mostly on generic MPC protocols, but include discussion of private
set intersection (Section 3.8.1) as a particularly useful functionality.

1.3 MPC Applications

MPC enables privacy-preserving applications where multiple mutually dis-
trusting data owners cooperate to compute a function. Here, we highlight a
few illustrative examples of privacy-preserving applications that can be built
using MPC. This list is far from exhaustive, and is meant merely to give an
idea of the range and scale of MPC applications.

Yao’s Millionaires Problem. The toy problem that was used to introduce
secure computation is not meant as a useful application. Yao (1982) introduces
it simply: “Two millionaires wish to know who is richer; however, they do not
want to find out inadvertently any additional information about each other’s

1.3. MPC Applications 9

wealth.” That is, the goal is to compute the Boolean result of x1 ≤ x2 where
x1 is the first party’s private input and x2 is the second party’s private input.
Although it is a toy problem, Yao’s Millionaires Problem can still be useful for
illustrating issues in MPC applications.

Secure auctions. The need for privacy in auctions is well understood.
Indeed, it is crucial for all participants, both bidders and sellers, to be able
to rely on the privacy and non-malleability of bids. Bid privacy requires that
no player may learn any other player’s bid (other than perhaps revealing the
winning bid upon the completion of the auction). Bid non-malleability means
that a player’s bid may not be manipulated to generate a related bid. For
example, if a party generates a bid of $n, then another party should not be
able to use this bid to produce a bid of $n + 1. Note that bid privacy does
not necessarily imply bid non-malleability — indeed it is possible to design
auction protocols that would hide a bid of $n while still allowing others to
generate a related bid $n + 1.

These properties are crucial in many standard bidding processes. For
example, a sealed bid auction is an auction where bidders submit private
(sealed) bids in attempts to purchase property, selling to the highest bidder.
Clearly, the first bidder’s bid value must be kept secret from other potential
bidders to prevent those bidders from having an unfair advantage. Similarly,
bid malleability may allow a dishonest bidder Bob to present a bid just slightly
over Alice’s bid, again, gaining an unfair advantage. Finally, the auction itself
must be conducted correctly, awarding the item to the highest bidder for the
amount of their bid.

A Vickrey auction is a type of sealed-bid auction where instead paying the
value of their own bid, the highest bidder wins but the price paid is the value
of the second-highest bid. This type of auction gives bidders an incentive to
bid their true value, but requires privacy and non-malleability of each bid, and
correctness in determining the winner and price.

MPC can be used to easily achieve all these features since it is only
necessary to embed the desired properties into the function used to jointly
execute the auction. All the participants can verify the function and then rely on
the MPC protocol to provide high confidence that the auction will be conducted
confidentially and fairly.

10 Introduction

Voting. Secure electronic voting, in a simple form, is simply computation of
the addition function which tallies the vote. Privacy and non-malleability of
the vote (properties discussed above in the context of auctions) are essential
for similar technical reasons. Additionally, because voting is a fundamental
civil process, these properties are often asserted by legislation.

As a side note, we remark that voting is an example of an application which
may require properties not covered by the standard MPC security definitions.
In particular, the property of coercion resistance is not standard in MPC (but
can be formally expressed and achieved (Küsters et al., 2012)). The issue here
is the ability of voters to prove to a third party how they voted. If such a proof
is possible (e.g., a proof might exhibit the randomness used in generating the
vote, which the adversary may have seen), then voter coercion is also possible.
We don’t delve into the specific aspects of secure voting beyond listing it here
as a natural application of MPC.

Secure machine learning. MPC can be used to enable privacy in both the
inference and training phases of machine learning systems.

Oblivious model inference allows a client to submit a request to a server
holding a pre-trained model, keeping the request private from the server S and
the model private from the client C. In this setting, the inputs to the MPC are
the private model from S, and the private test input from C, and the output
(decoded only for C) is the model’s prediction. An example of recent work in
this setting include MiniONN (Liu et al., 2017), which provided a mechanism
for allowing any standard neural network to be converted to an oblivious model
service using a combination of MPC and homomorphic encryption techniques.

In the training phase, MPC can be used to enable a group of parties to
train a model based on their combined data without exposing that data. For the
large scale data sets needed for most machine learning applications, it is not
feasible to perform training across private data sets as a generic many-party
computation. Instead, hybrid approaches have been designed that combine
MPC with homomorphic encryption (Nikolaenko et al., 2013b; Gascón et al.,
2017) or develop custom protocols to perform secure arithmetic operations
efficiently (Mohassel and Zhang, 2017). These approaches can scale to data
sets containing many millions of elements.

1.3. MPC Applications 11

Other applications. Many other interesting applications have been proposed
for using MPC to enable privacy. A few examples include privacy-preserving
network security monitoring (Burkhart et al., 2010), privacy-preserving ge-
nomics (Wang et al., 2015a; Jagadeesh et al., 2017), private stable match-
ing (Doerner et al., 2016), contact discovery (Li et al., 2013; De Cristofaro
et al., 2013), ad conversion (Kreuter, 2017), and spam filtering on encrypted
email (Gupta et al., 2017).

1.3.1 Deployments

Although MPC has seen much success as a research area and in experimental
use, we are still in the early stages of deploying MPC solutions to real
problems. Successful deployment of an MPC protocol to solve a problem
involving independent andmutually distrusting data owners requires addressing
a number of challenging problems beyond the MPC execution itself. Examples
of these problems include building confidence in the system that will execute
the protocol, understanding what sensitive information might be inferred from
the revealed output of the MPC, and enabling decision makers charged with
protecting sensitive data but without technical cryptography background to
understand the security implications of participating in the MPC.

Despite these challenges, there have been several successful deployments
of MPC and a number of companies now focus on providing MPC-based
solutions. We emphasize that in this early stage of MPC penetration and
awareness, MPC is primarily deployed as an enabler of data sharing. In
other words, organizations are typically not seeking to use MPC to add a
layer of privacy in an otherwise viable application (we believe this is yet
forthcoming). Rather, MPC is used to enable a feature or an entire application,
which otherwise would not be possible (or would require trust in specialized
hardware), due to the value of the shared data, protective privacy legislation,
or mistrust of the participants.

Danish sugar beets auction. In what is widely considered to be the first
commercial application of MPC, Danish researchers collaborated with the
Danish government and stakeholders to create an auction and bidding platform
for sugar beet production contracts. As reported in Bogetoft et al. (2009), bid
privacy and auction security were seen as essential for auction participants.

12 Introduction

The farmers felt that their bids reflected their capabilities and costs, which
they did not want to reveal to Danisco, the only company in Denmark that
processed sugar beets. At the same time, Danisco needed to be involved in the
auction as the contracts were securities directly affecting the company.

The auction was implemented as a three-party MPC among representatives
for Danisco, the farmer’s association (DKS) and the researchers (SIMAP
project). As explained by Bogetoft et al. (2009), a three party solution was
selected, partly because it was natural in the given scenario, but also because it
allowed using efficient information theoretic tools such as secret sharing. The
project led to the formation of a company, Partisia, that uses MPC to support
auctions for industries such as spectrum and energy markets, as well as related
applications such as data exchange (Gallagher et al., 2017).

Estonian students study. In Estonia, a country with arguably the most
advanced e-government and technology awareness, alarms were raised about
graduation rates of IT students. Surprisingly, in 2012, nearly 43% of IT
students enrolled in the previous five years had failed to graduate. One potential
explanation considered was that the IT industry was hiring too aggressively,
luring students away from completing their studies. The Estonian Association
of Information and Communication Technology wanted to investigate by
mining education and tax records to see if there was a correlation. However,
privacy legislation prevented data sharing across the Ministry of Education
and the Tax Board. In fact, k-anonymity-based sharing was allowed, but it
would have resulted in low-quality analysis, since many students would not
have had sufficiently large groups of peers with similar qualities.

MPC provided a solution, facilitated by the Estonian company Cybernetica
using their Sharemind framework (Bogdanov et al., 2008a). The data analysis
was done as a three-party computation, with servers representing the Estonian
Information System’s Authority, the Ministry of Finance, and Cybernetica. The
study, reported in Cybernetica (2015) and Bogdanov (2015), found that there
was no correlation between working during studies and failure to graduate on
time, but that more education was correlated with higher income.

Boston wage equity study. An initiative of the City of Boston and the
BostonWomen’sWorkforce Council (BWWC) aims to identify salary inequities

1.3. MPC Applications 13

across various employee gender and ethnic demographics at different levels of
employment, from executive to entry-level positions. This initiative is widely
supported by the Boston area organizations, but privacy concerns prevented
direct sharing of salary data. In response, Boston University researchers
designed and implemented a web-based MPC aggregation tool, which allowed
employers to submit the salary data privately and with full technical and legal
protection, for the purposes of the study.

As reported by Bestavros et al. (2017), MPC enabled the BWWC to
conduct their analysis and produce a report presenting their findings. The effort
included a series of meetings with stakeholders to convey the risks and benefits
of participating in the MPC, and considered the importance of addressing
usability and trust concerns. One indirect result of this work is inclusion of
secure multi-party computation as a requirement in a bill for student data
analysis recently introduced in the United States Senate (Wyden, 2017).

Key management. One of the biggest problems faced by organizations today
is safeguarding sensitive data as it is being used. This is best illustrated using
the example of authentication keys. This use case lies at the core of the product
offering of Unbound Tech (Unbound Tech, 2018). Unlike other uses of MPC
where the goal is to protect data owned by multiple parties from exposure, here
the goal is to protect from compromise the data owned by a single entity.

To enable a secure login facility, an organization must maintain private
keys. Let’s consider the example of shared-key authentication, where each user
has shared a randomly chosen secret key with the organization. Each time the
user U authenticates, the organization’s server S looks up the database of keys
and retrieves U’s public key skU , which is then used to authenticate and admit
U to the network by running key exchange.

The security community has long accepted that it is nearly impossible
to operate a fully secure complex system, and an adversary will be able to
penetrate and stealthily take control over some of the network nodes. Such
an advanced adversary, sometimes called Advanced Persistent Threat (APT),
aims to quietly undermine the organization. Naturally, the most prized target
for APT and other types of attackers is the key server.

MPC can play a significant role in hardening the key server by splitting
its functionality into two (or more) hosts, say, S1 and S2, and secret-sharing

14 Introduction

key material among the two servers. Now, an attacker must compromise both
S1 and S2 to gain access to the keys. We can run S1 and S2 on two different
software stacks to minimize the chance that they will both be vulnerable to
the exploit available to the malware, and operate them using two different
sub-organizations to minimize insider threats. Of course, routine execution
does need access to the keys to provide authentication service; at the same time,
key should never be reconstructed as the reconstructing party will be the target
of the APT attack. Instead, the three players, S1, S2, and the authenticating user
U, will run the authentication inside MPC, without ever reconstructing any
secrets, thus removing the singular vulnerability and hardening the defense.

1.4 Overview

Because MPC is a vibrant and active research area, it is possible to cover only
a small fraction of the most important work in this book. We mainly discuss
generic MPC techniques, focusing mostly on the two-party scenario, and
emphasizing a setting where all but one of the parties may be corrupted. In the
next chapter, we provide a formal definition of secure multi-party computation
and introduce security models that are widely-used in MPC. Although we
do not include formal security proofs in this book, it is essential to have
clear definitions to understand the specific guarantees that MPC provides.
Chapter 3 describes several fundamental MPC protocols, focusing on the most
widely-used protocols that resist any number of corruptions. Chapter 4 surveys
techniques that have been developed to enable efficient implementations of
MPC protocols, and Chapter 5 describes methods that have been used to
provide sub-linear memory abstractions for MPC.

Chapters 3–5 target the weak semi-honest adversary model for MPC
(defined in Chapter 2), in which is it assumed that all parties follow the protocol
as specified. In Chapter 6, we consider how MPC protocols can be hardened
to provide security against active adversaries, and Chapter 7 explores some
alternative threat models that enable trade-offs between security and efficiency.
We conclude in Chapter 8, outlining the trajectory of MPC research and
practice, and suggesting possible directions for the future.

2
Defining Multi-Party Computation

In this chapter, we introduce notations and conventions we will use throughout,
define some basic cryptographic primitives, and provide a security definition
for multi-party computation. Although we will not focus on formal security
proofs or complete formal definitions, it is important to have clear security
definitions to understand exactly what properties protocols are designed to
provide. The protocols we discuss in later chapters have been proven secure
based on these definitions.

2.1 Notations and Conventions

We will abbreviate Secure Multi-Party Computation asMPC, and will use it to
denote secure computation among two or more participants. The term secure
function evaluation (SFE) is often used to mean the same thing, although it can
also apply to contexts where only one party provides inputs to a function that
is evaluated by an outsourced server. Because two-party MPC is an important
special case, which received a lot of targeted attention, and because two-party
protocols are often significantly different from the general n-party case, we
will use 2PC to emphasize this setting when needed.

We assume existence of direct secure channels between each pairs of

15

16 Defining Multi-Party Computation

participating players. Such channels could be achieved inexpensively through
a variety of means, and are out of scope in this book.

We denote encryption and decryption of a message m under key k as
Enck(m) and Deck(m). We will refer to protocol participants interchangeably
also as parties or players, and will usually denote them as P1, P2, etc. We will
denote the adversary by A.

A negligible function ν : N → R is any function that approaches zero
asymptotically faster than any inverse polynomial. In other words, for any
polynomial p, ν(n) < 1/p(n) for all but finitely many n.

We will denote computational and statistical security parameters by κ and
σ respectively. The computational security parameter κ governs the hardness
of problems that can be broken by an adversary’s offline computation — e.g.,
breaking an encryption scheme. In practice κ is typically set to a value like
128 or 256. Even when we consider security against computationally bounded
adversaries, there may be some attacks against an interactive protocol that are
not made easier by offline computation. For example, the interactive nature of
a protocol may give the adversary only a single opportunity to violate security
(e.g., by sending a message that has a special property, like predicting the
random value that an honest party will chose in the next round). The statistical
security parameter σ governs the hardness of these attacks. In practice, σ is
typically set to a smaller value like 40 or 80. The correct way to interpret
the presence of two security parameters is that security is violated only with
probability 2−σ + ν(κ), where ν is a negligible function that depends on the
resources of the adversary. When we consider computationally unbounded
adversaries, we omit κ and require ν = 0.

We will use symbol ∈R to denote uniformly random sampling from a
distribution. For example we write “choose k ∈R {0, 1}κ” to mean that k is
a uniformly chosen κ-bit long string. More generally, we write “v ∈R D” to
denote sampling according to a probability distribution D. Often the distribution
in question is the output of a randomized algorithm. We write “v ∈R A(x)” to
denote that v is the result of running randomized algorithm A on input x.

Let D1 and D2 be two probability distributions indexed by a security
parameter, or equivalently two algorithms that each take a security parameter
as input.1 We say that D1 and D2 are indistinguishable if, for all algorithms A

1In the literature, D1 and D2 are often referred to as an ensemble of distributions.

2.2. Basic Primitives 17

there exists a negligible function ν such that:

Pr[A(D1(n)) = 1] − Pr[A(D2(n)) = 1] ≤ ν(n)

In other words, no algorithm behaves more than negligibly differently when
given inputs sampled according to D1 vs D2. When we consider only non-
uniform, polynomial-time algorithms A, the definition results in computational
indistinguishability.When we consider all algorithms without regard to their
computational complexity, we get a definition of statistical indistinguishability.
In that case, the probability above is bounded by the statistical distance (also
known as total variation distance) of the two distributions, which is defined as:

∆(D1(n),D2(n)) =
1
2

∑
x

��� Pr[x = D1(n)] − Pr[x = D2(n)]
���

Throughout this work, we use computational security to refer to security
against adversaries implemented by non-uniform, polynomial-time algorithms.
We use information-theoretic security (also known as unconditional or statisti-
cal security) to mean security against arbitrary adversaries (even those with
unbounded computational resources).

2.2 Basic Primitives

Here, we provide definitions of a few basic primitives we use in our presentation.
Several other useful primitives are actually special cases of MPC (i.e., they are
defined as MPC of specific functions). These are defined in Section 2.4.

Secret Sharing. Secret sharing is an essential primitive, that is at the core
of many MPC approaches. Informally, a (t, n)-secret sharing scheme splits the
secret s into n shares, such that any t − 1 of the shares reveal no information
about s, while any t shares allow complete reconstruction of the secret s. There
are many variants of possible security properties of secret sharing schemes;
we provide one definition, adapted from Beimel and Chor (1993), next.

Definition 2.1. Let D be the domain of secrets and D1 be the domain of
shares. Let Shr : D→ Dn

1 be a (possibly randomized) sharing algorithm, and
Rec : Dk

1 → D be a reconstruction algorithm. A (t, n)-secret sharing scheme
is a pair of algorithms (Shr,Rec) that satisfies these two properties:

18 Defining Multi-Party Computation

• Correctness. Let (s1, s2, . . . , sn) = Shr(s). Then,

Pr[∀k ≥ t,Rec(si1, . . . , sik) = s] = 1.

• Perfect Privacy. Any set of shares of size less than t does not reveal
anything about the secret in the information theoretic sense. More
formally, for any two secrets a, b ∈ D and any possible vector of shares
v = v1, v2, ..., vk , such that k < t,

Pr[v = Shr(a)|k] = Pr[v = Shr(b)|k],

where |k denotes appropriate projection on a subspace of k elements.

In many of our discussions we will use (n, n)-secret sharing schemes, where
all n shares are necessary and sufficient to reconstruct the secret.

RandomOracle. RandomOracle (RO) is a heuristic model for the security of
hash functions, introduced by Bellare and Rogaway (1993). The idea is to treat
the hash function as a public, idealized random function. In the random oracle
model, all parties have access to the public function H : {0, 1}∗ → {0, 1}κ ,
implemented as a stateful oracle. On input string x ∈ {0, 1}∗, H looks up
its history of calls. If H(x) had never been called, H chooses a random
rx ∈ {0, 1}κ , remembers the pair x, rx and returns rx . If H(x) had been called
before, H returns rx . In this way, the oracle realizes a randomly-chosen function
{0, 1}∗ → {0, 1}κ .

The random oracle model is a heuristic model, because it captures only
those attacks that treat the hash function H as a black-box. It deviates from
reality in that it models a public function (e.g., a standardized hash function
like SHA-256) as an inherently random object. In fact, it is possible to construct
(extremely contrived) schemes that are secure in the random oracle model,
but which are insecure whenever H is instantiated by any concrete function
(Canetti et al., 1998).

Despite these shortcomings, the random oracle model is often considered
acceptable for practical applications. Assuming a random oracle often leads to
significantly more efficient constructions. In this work we will be careful to
state when a technique relies on the random oracle model.

2.3. Security of Multi-Party Computation 19

2.3 Security of Multi-Party Computation

Informally, the goal of MPC is for a group of participants to learn the correct
output of some agreed-upon function applied to their private inputs without
revealing anything else. We now provide a more formal definition to clarify
the security properties MPC aims to provide. First, we present the real-ideal
paradigm which forms the conceptual core of defining security. Then we
discuss two different adversary models commonly used for MPC. Finally, we
discuss issues of composition—namely, whether security preserved in the
natural way when a secure protocol invokes another subprotocol.

2.3.1 Real-Ideal Paradigm

A natural way to define security is to come up with a kind of a “laundry list” of
things that constitute a violation of security. For example, the adversary should
not be able to learn a certain predicate of another party’s input, the adversary
should not be able to induce impossible outputs for the honest parties, and the
adversary should not be able to make its inputs depend on honest parties’ inputs.
Not only is this a tedious approach, but it is cumbersome and error-prone. It is
not obvious when the laundry list could be considered complete.

The real-ideal paradigm avoids this pitfall completely by introducing an
“ideal world” that implicitly captures all security guarantees, and defining
security in relation to this ideal world. Although they used different terminology,
the definition of probabilistic encryption by Goldwasser and Micali (1984) is
widely considered to be the first instance of using this approach to define and
prove security.

Ideal World. In the ideal world, the parties securely compute the function F
by privately sending their inputs to a completely trusted party T , referred to as
the functionality. Each party Pi has an associated input xi , which is sent to T ,
who simply computes F (x1, . . . , xn) and returns the result to all parties. Often
we will make a distinction between F as a trusted party (functionality) and the
circuit C that such a party computes on the private inputs.

We can imagine an adversary attempting to attack the ideal-world inter-
action. An adversary can take control over any of the parties Pi, but not T
(that is the sense in which T is described as a trusted party). The simplicity

20 Defining Multi-Party Computation

of the ideal world makes it easy to understand the effect of such an attack.
Considering our previous laundry list: the adversary clearly learns no more
than F (x1, . . . , xn) since that is the only message it receives; the outputs given
to the honest parties are all consistent and legal; the adversary’s choice of
inputs is independent of the honest parties’.

Although the ideal world is easy to understand, the presence of a fully-
trusted third party makes it imaginary. We use the ideal world as a benchmark
against which to judge the security of an actual protocol.

Real World. In the real world, there is no trusted party. Instead, all parties
communicate with each other using a protocol. The protocol π specifies for
each party Pi a “next-message” function πi. This function takes as input a
security parameter, the party’s private input xi, a random tape, and the list of
messages Pi has received so far. Then, πi outputs either a next message to send
along with its destination, or else instructs the party to terminate with some
specific output.

In the real world, an adversary can corrupt parties—corruption at the
beginning of the protocol is equivalent to the original party being an adversary.
Depending on the threat model (discussed next), corrupt parties may either
follow the protocol as specified, or deviate arbitrarily in their behavior.

Intuitively speaking, the real world protocol π is considered secure if any
effect that an adversary can achieve in the real world can also be achieved by
a corresponding adversary in the ideal world. Put differently, the goal of a
protocol is to provide security in the real world (given a set of assumptions)
that is equivalent to that in the ideal world.

2.3.2 Semi-Honest Security

A semi-honest adversary is one who corrupts parties but follows the protocol as
specified. In other words, the corrupt parties run the protocol honestly but they
may try to learn as much as possible from the messages they receive from other
parties. Note that thismay involve several colluding corrupt parties pooling their
views together in order to learn information. Semi-honest adversaries are also
considered passive in that they cannot take any actions other than attempting
to learn private information by observing a view of a protocol execution.
Semi-honest adversaries are also commonly called honest-but-curious.

2.3. Security of Multi-Party Computation 21

The view of a party consists of its private input, its random tape, and the
list of all messages received during the protocol. The view of an adversary
consists of the combined views of all corrupt parties. Anything an adversary
learns from running the protocol must be an efficiently computable function of
its view. That is, without loss of generality we need only consider an “attack”
in which the adversary simply outputs its entire view.

Following the real-ideal paradigm, security means that such an “attack”
can also be carried out in the ideal world. That is, for a protocol to be secure,
it must be possible in the ideal world to generate something indistinguishable
from the real world adversary’s view. Note that the adversary’s view in the ideal
world consists of nothing but inputs sent to T and outputs received from T .
So, an ideal-world adversary must be able to use this information to generate
what looks like a real-world view. We refer to such an ideal-world adversary
as a simulator, since it generates a “simulated” real-world view while in the
ideal-world itself. Showing that such a simulator exists proves that there is
nothing an adversary can accomplish in the real world that could not also be
done in the ideal world.

More formally, let π be a protocol and F be a functionality. Let C be the
set of parties that are corrupted, and let Sim denote a simulator algorithm. We
define the following distributions of random variables:

• Realπ(κ,C; x1, . . . , xn): run the protocol with security parameter κ,
where each party Pi runs the protocol honestly using private input xi.
Let Vi denote the final view of party Pi , and let yi denote the final output
of party Pi.
Output {Vi | i ∈ C}, (y1, . . . , yn).

• IdealF,Sim(κ,C; x1, . . . , xn): Compute (y1, . . . , yn) ← F (x1, . . . , xn).
Output Sim(C, {(xi, yi) | i ∈ C}), (y1, . . . , yn).

A protocol is secure against semi-honest adversaries if the corrupted parties
in the real world have views that are indistinguishable from their views in the
ideal world:

Definition 2.2. A protocol π securely realizes F in the presence of semi-honest
adversaries if there exists a simulator Sim such that, for every subset of corrupt
parties C and all inputs x1, . . . , xn, the distributions

Realπ(κ,C; x1, . . . , xn)

22 Defining Multi-Party Computation

and
IdealF,Sim(κ,C; x1, . . . , xn)

are indistinguishable (in κ).

In defining Real and Ideal we have included the outputs of all parties, even
the honest ones. This is a way of incorporating a correctness condition into
the definition. In the case that no parties are corrupt (C = ∅), the output of
Real and Ideal simply consists of all parties’ outputs in the two interactions.
Hence, the security definition implies that protocol gives outputs which are
distributed just as their outputs from the ideal functionality (and this is true
even when F is randomized). Because the distribution of y1, . . . , yn in Real
does not depend on the set C of corrupted parties (no matter who is corrupted,
the parties all run honestly), it is not strictly necessary to include these values
in the case of C , ∅, but we choose to include it to have a unified definition.

The semi-honest adversary model may at first glance seem exceedingly
weak—simply reading and analyzing received messages barely even seems
like an attack at all! It is reasonable to ask why such a restrictive adversary
model is worth considering at all. In fact, achieving semi-honest security is far
from trivial and, importantly, semi-honest protocols often serve as a basis for
protocols in more robust settings with powerful attackers. Additionally, many
realistic scenarios do correspond to semi-honest attack behavior. One such
example is computing with players who are trusted to act honestly, but cannot
fully guarantee that their storage might not be compromised in the future.

2.3.3 Malicious Security

A malicious (also known as active) adversary may instead cause corrupted
parties to deviate arbitrarily from the prescribed protocol in an attempt to
violate security. A malicious adversary has all the powers of a semi-honest
one in analyzing the protocol execution, but may also take any actions it
wants during protocol execution. Note that this subsumes an adversary that
can control, manipulate, and arbitrarily inject messages on the network (even
through throughout this book we assume direct secure channels between each
pair of parties). As before, security in this setting is defined in comparison to
the ideal world, but there are two important additions to consider:

2.3. Security of Multi-Party Computation 23

Effect on honest outputs. When the corrupt parties deviate from the protocol,
there is now the possibility that honest parties’ outputs will be affected.
For example, imagine an adversary that causes two honest parties to
output different things while in the ideal world all parties get identical
outputs. This condition is somewhat trivialized in the previous definition
— while the definition does compare real-world outputs to ideal-world
outputs, these outputs have no dependence on the adversary (set of
corrupted parties). Furthermore, we can/should make no guarantees on
the final outputs of corrupt parties, only of the honest parties, since a
malicious party can output whatever it likes.

Extraction. Honest parties follow the protocol according to a well-defined
input, which can be given to T in the ideal world as well. In contrast,
the input of a malicious party is not well-defined in the real world,
which leads to the question of what input should be given to T in the
ideal world. Intuitively, in a secure protocol, whatever an adversary
can do in the real world should also be achievable in the ideal world
by some suitable choice of inputs for the corrupt parties. Hence, we
leave it to the simulator to choose inputs for the corrupt parties. This
aspect of simulation is called extraction, since the simulator extracts an
effective ideal-world input from the real-world adversary that “explains”
the input’s real-world effect. In most constructions, it is sufficient to
consider black-box simulation, where the simulator is given access only
to the oracle implementing the real-world adversary, and not its code.

WhenA denotes the adversary program, we write corrupt(A) to denote the set
of parties that are corrupted, and use corrupt(Sim) for the set of parties that are
corrupted by the ideal adversary, Sim. As we did for the semi-honest security
definition, we define distributions for the real world and ideal world, and define
a secure protocol as one that makes those distributions indistinguishable:

• Realπ,A(κ; {xi | i < corrupt(A)}): run the protocol on security parame-
ter κ, where each honest party Pi (for i < corrupt(A)) runs the protocol
honestly using given private input xi , and the messages of corrupt parties
are chosen according to A (thinking of A as a protocol next-message
function for a collection of parties). Let yi denote the output of each

24 Defining Multi-Party Computation

honest party Pi and let Vi denote the final view of party Pi.
Output ({Vi | i ∈ corrupt(A)}, {yi | i < corrupt(A)}).

• IdealF,Sim(κ; {xi | i < corrupt(A)}): Run Sim until it outputs a set of
inputs {xi | i ∈ corrupt(A)}. Compute (y1, . . . , yn) ← F (x1, . . . , xn).
Then, give {yi | i ∈ corrupt(A)} to Sim.2 Let V∗ denote the final output
of Sim (a set of simulated views).
Output (V∗, {yi | i < corrupt(Sim)}).

Definition 2.3. A protocol π securely realizes F in the presence of malicious
adversaries if for every real-world adversary A there exists a simulator Sim
with corrupt(A) = corrupt(Sim) such that, for all inputs for honest parties
{xi | i < corrupt(A)}, the distributions

Realπ,A(κ; {xi | i < corrupt(A)})

and
IdealF,Sim(κ; {xi | i < corrupt(Sim)})

are indistinguishable (in κ).

Note that the definition quantifies only over the inputs of honest parties
{xi | i < corrupt(A)}. The interaction Real does not consider the corrupt
parties to have any inputs, and the inputs of the corrupt parties in Sim is only
determined indirectly (by the simulator’s choice of what to send to F on the
corrupt parties’ behalf). While it would be possible to also define inputs for
corrupt parties in the real world, such inputs would merely be “suggestions”
since corrupt parties could choose to run the protocol on any other input (or
behave in a way that is inconsistent with all inputs).

Reactive functionalities. In the ideal world, the interaction with the func-
tionality consists of just a single round: inputs followed by outputs. It is possible
to generalize the behavior of F so that it interacts with the parties over many
rounds of interaction, keeping its own private internal state between rounds.
Such functionalities are called reactive.

2To be more formal, we can write the simulator Sim as a pair of algorithms Sim =
(Sim1,Sim2) which capture this two-phase process. Sim1 (on input κ) outputs {xi | i ∈
corrupt(A)} and arbitrary internal state Σ. Then Sim2 takes input Σ and {yi | i ∈ corrupt(A)},
and gives output V∗.

2.3. Security of Multi-Party Computation 25

One example of a reactive functionality is as the dealer in a poker game. The
functionality must keep track of the state of all cards, taking input commands
and giving outputs to all parties in many rounds.

Another example is an extremely common functionality called commitment.
This functionality accepts a bit b (or more generally, a string) from P1 and
gives output “committed” to P2, while internally remembering b. At some
later time, if P1 sends the command “reveal” (or “open”) to the functionality,
it gives b to P2.

Security with abort. In any message-based two-party protocol, one party
will learn the final output before the other. If that party is corrupt and malicious,
they may simply refuse to send the last message to the honest party and thereby
prevent the honest party from learning the output. However, this behavior is
incompatible with our previous description of the ideal world. In the ideal
world, if corrupt parties receive output from the functionality then all parties do.
This property is called output fairness and not all functions can be computed
with this property (Cleve, 1986; Gordon et al., 2008; Asharov et al., 2015a).

Typical results in the malicious setting provide a weaker property known as
security with abort, which requires slightly modifying the ideal functionality as
follows. First, the functionality is allowed to know the identities of the corrupt
parties. The functionality’s behavior is modified to be slightly reactive: after
all parties have provided input, the functionality computes outputs and delivers
the outputs to the corrupt parties only. Then the functionality awaits either
a “deliver” or “abort” command from the corrupted parties. Upon receiving
“deliver”, the functionality delivers the outputs to all the honest parties. Upon
receiving “abort”, the functionality delivers an abort output (⊥) to all the
honest parties.

In this modified ideal world, an adversary is allowed to learn the output
before the honest parties and to prevent the honest parties from receiving any
output. It is important to note, however, that whether an honest party aborts
can depend only on the corrupt party’s outputs. In particular, it would violate
security if the honest party’s abort probability depends on its own input.

Usually the possibility of blocking outputs to honest parties is not writ-
ten explicitly in the description of the functionality. Instead, it is generally
understood that when discussing security against malicious adversaries, the

26 Defining Multi-Party Computation

adversary has control over output delivery to honest parties and output fairness
is not expected.

Adaptive corruption. We have defined both the real and ideal worlds so that
the identities of the corrupted parties are fixed throughout the entire interaction.
This provides what is known as security against static corruption. It is also
possible to consider scenarios where an adversary may choose which parties to
corrupt during the protocol execution, possibly based on what it learns during
the interaction. This behavior is known as adaptive corruption.

Security against adaptive corruption can be modeled in the real-ideal
paradigm, by allowing the adversary to issue a command of the form “corrupt
Pi”. In the real world, this results in the adversary learning the current view
(including private randomness) of Pi and subsequently taking over control
of its protocol messages. In the ideal world, the simulator learns only the
input and outputs of the party upon corruption, and must use this information
to generate simulated views. Of course, the views of parties are correlated
(if Pi sends a message to Pj , then that message is included in both parties’
views). The challenge of adaptive security is that the simulator must produce
views piece-by-piece. For example, the simulator may be asked to produce a
view of Pi when that party is corrupted. Any messages sent by Pj to Pi must
be simulated without knowledge of Pj’s private input. Later, the simulator
might be asked to provide a view of Pj (including its private randomness) that
“explains” its protocol messages as somehow consistent with whatever private
input it had.

In this work we consider only static corruption, following the vast majority
of work in this field.

2.3.4 Hybrid Worlds and Composition

In the interest of modularity, it is often helpful to design protocols that make
use of other ideal functionalities. For example, we may design a protocol π
that securely realizes some functionality F , where the parties of π also interact
with another functionality G in addition to sending messages to each other.
Hence, the real world for this protocol includes G, while the ideal world (as
usual) includes only F . We call this modified real world the G-hybrid world.

2.3. Security of Multi-Party Computation 27

A natural requirement for a security model is composition: if π is a G-
hybrid protocol that securely realizes F (i.e., parties in π send messages and
also interact with an ideal G), and ρ is a protocol that securely realizes G, then
composing π and ρ in the natural way (replacing every invocation of G with
a suitable invocation of ρ) also results in a secure protocol for F . While we
have not defined all of the low-level details of a security model for MPC, it
may be surprising that some very natural ways of specifying the details do not
guarantee composability of secure protocols!

The standard way of achieving guaranteed composition is to use the univer-
sal composability (UC) framework from Canetti (2001). The UC framework
augments the security model that we have sketched here with an additional
entity called the environment, which is included in both the ideal and real
worlds. The purpose of the environment is to capture the “context” in which
the protocol executes (e.g., the protocol under consideration is invoked as a
small step in some larger calling protocol). The environment chooses inputs
for the honest party and receives their outputs. It also may interact arbitrarily
with the adversary.

The same environment is included in the real and ideal worlds, and its
“goal” is to determine whether it is instantiated in the real or ideal world.
Previously we defined security by requiring certain real and ideal views to
be indistinguishable. In this setting, we can also absorb any distinguisher of
these views into the environment itself. Hence, without loss of generality, the
environment’s final output can be just a single bit which can be interpreted
as the environment’s “guess” of whether it is instantiated in the real or ideal
world.

Next, we define the real and ideal executions, where Z is an environment:

• Realπ,A,Z (κ): run an interaction involving adversaryA and environment
Z . When Z generates an input for an honest party, the honest party runs
protocol π, and gives its output to Z . Finally, Z outputs a single bit,
which is taken as the output of Realπ,A,Z (κ).

• IdealF,Sim,Z (κ): run an interaction involving adversary (simulator) Sim
and environment Z . When Z generates an input for an honest party, the
input is passed directly to functionality F and the corresponding output
is given to Z (on behalf of that honest party). The output bit of Z is
taken as the output of IdealF,Sim,Z (κ).

28 Defining Multi-Party Computation

Definition 2.4. A protocol π UC-securely realizes F if for all real-world
adversaries A there exists a simulator Sim with corrupt(A) = corrupt(Sim)
such that, for all environments Z:��� Pr[Realπ,A,Z (κ) = 1] − Pr[IdealF,Sim,Z (κ) = 1]

��� is negligible (in κ).
Since the definition quantifies over all environments, we can always

consider absorbing the adversary A into the environment Z , so that what is
left over is the so-called “dummy adversary” (which simply forwards protocol
messages as instructed by Z).

In other (non UC-composable) security models, the ideal-world adversary
(simulator) can depend arbitrarily on the real-world adversary. In particular,
the simulator can do things like internally run the adversary and repeatedly
rewind that adversary to a previous internal state. Many protocols are proven
in these weaker model where the composability may be restricted. Sequential
composition security (i.e., security for protocols which call functionalities in a
sequential manner) holds for all protocols discussed in this book.

In the UC model such rewinding is not possible since the adversary
can be assumed to be absorbed into the environment, and the simulator is
not allowed to depend on the environment. Rather, the simulator must be a
straight-line simulator: whenever the environment wishes to send a protocol
message, the simulator must reply immediately with a simulated response.
A straight-line simulator must generate the simulated transcript in one pass,
whereas the previous definitions allowed for the simulated transcript or view to
be generated without any restrictions. Assuming the other primitives such as
oblivious transfer (Section 2.4) and commitments (Section 2.4) used in these
protocols provide UC-security, the malicious secure protocols described in
this book are all UC-secure.

2.4 Specific Functionalities of Interest

Here, we define several functionalities that have been identified as particularly
useful building blocks for building MPC protocols.

Oblivious Transfer. Oblivious Transfer (OT) is an essential building block
for secure computation protocols. It is theoretically equivalent to MPC as

2.4. Specific Functionalities of Interest 29

Parameters:

1. Two parties: Sender S and Receiver R.
S has two secrets, x0, x1 ∈ {0, 1}n, and R has a selection bit, b ∈ {0, 1}.

Functionality:

• R sends b to F OT, S sends x0, x1 to F OT.

• R receives xb, S receives ⊥.

Figure 2.1: 1-out-of-2 OT functionality FOT.

shown by Kilian (1988): given OT, one can build MPC without any additional
assumptions, and, similarly, one can directly obtain OT from MPC.

The standard definition of 1-out-of-2 OT involves two parties, a Sender S
holding two secrets x0, x1 and a receiver R holding a choice bit b ∈ {0, 1}. OT
is a protocol allowing R to obtain xb while learning nothing about the “other”
secret x1−b. At the same time, S does not learn anything at all. More formally:

Definition 2.5. A 1-out-of-2 OT is a cryptographic protocol securely imple-
menting the functionality F OT of Figure 2.1.

Many variants of OT may be considered. A natural variant is 1-out-of-k
OT, in which S holds k secrets, and R has a choice selector in {0, . . . , k − 1}.
We discuss protocols for implementing OT efficiently in Section 3.7.

Commitment. Commitment is a fundamental primitive in many crypto-
graphic protocols. A commitment scheme allows a sender to commit to a
secret value, and reveal it at some later time to a receiver. The receiver should
learn nothing about the committed value before it is revealed by the sender (a
property referred to as hiding), while the sender should not be able to change
its choice of value after committing (the binding property).

Commitment is rather simple and inexpensive in the random oracle model.
To commit to x, simply choose a random value r ∈R {0, 1}κ and publish the
value y = H(x‖r). To later reveal, simply announce x and r .

30 Defining Multi-Party Computation

Parameters:

1. Two parties: Sender S and Receiver R. S has a string s ∈ {0, 1}n.

Functionality:

• S sends s to F Comm. F Comm sends committed to R.

• At some later time, S sends open to F Comm, and F Comm sends s to R.

Figure 2.2: Commitment functionality F Comm.

Parameters:

1. Two parties: Prover P and VerifierV.

Functionality:

• P sends (C, x) to F zk, where C : {0, 1}n → {0, 1} is a Boolean
circuit with 1 output bit, and x ∈ {0, 1}n. If C(x) = 1 then F zk sends
(proven, C) toV. Otherwise, it sends ⊥ toV.

Figure 2.3: Zero-knowledge proof functionality F zk.

Definition 2.6. Commitment is a cryptographic protocol securely implement-
ing the functionality F Comm of Figure 2.2.

Zero-Knowledge Proof. A zero-knowledge (ZK) proof allows a prover to
convince a verifier that it knows x such that C(x) = 1, without revealing any
further information about x. Here C is a public predicate.

As a simple example, suppose G is a graph and that Alice knows a 3-
coloring χ for G. Then Alice can use a ZK proof to convince Bob that G is
3-colorable. She constructs a circuit CG that interprets its input as an encoding
of a 3-coloring and checks whether it is a legal 3-coloring of G. She uses
(CG, χ) as input to the ZK proof. From Bob’s point of view, he receives output
(proven, CG) if and only if Alice was able to provide a valid 3-coloring of G.
At the same time, Alice knows that Bob learned nothing about her 3-coloring

2.5. Further Reading 31

χ other than the fact that some legal χ exists.

Definition 2.7. A zero-knowledge proof is a cryptographic protocol imple-
menting the functionality F zk of Figure 2.3.

There are several variants of ZK proofs identified in the literature. Our
specific variant is more precisely a zero-knowledge argument of knowledge.
The distinctions between these variants are not crucial for the level of detail
we explore in this book.

2.5 Further Reading

The real-ideal paradigm was first applied in the setting of MPC by Goldwasser
et al. (1985), for the special case of zero-knowledge. Shortly thereafter the
definition was generalized to arbitrary MPC by Goldreich et al. (1987). These
definitions contain the important features of the real-ideal paradigm, but
resulted in a notion of security (against malicious adversaries) that was not
preserved under composition. In other words, a protocol could be secure
according to these models when executed in isolation, but may be totally
insecure when two protocol instances are run concurrently.

The definition of security that we have sketched in this book is the Universal
Composition (UC) framework of Canetti (2001). Protocols proven secure in
the UC framework have the important composition property described in
Section 2.3.4, which in particular guarantees security of a protocol instance
no matter what other protocols are executing concurrently. While the UC
framework is the most popular model with this property, there are other models
with similar guarantees (Pfitzmann and Waidner, 2000; Hofheinz and Shoup,
2011). The details of all such security models are extensive and subtle. However,
a significantly simpler model is presented by Canetti et al. (2015), which is
equivalent to the full UC model for the vast majority of cases. Some of the
protocols we describe are secure in the random oracle model. Canetti et al.
(2014) describe how to incorporate random oracles into the UC framework.

Our focus in this book is on the most popular security notions — namely,
semi-honest security and malicious security. The literature contains many
variations on these security models, and some are a natural fit for real-world
applications. We discuss some alternative security models in Chapter 7.

3
Fundamental MPC Protocols

In this chapter we survey several important MPC approaches, covering the
main protocols and presenting the intuition behind each approach.

All of the approaches discussed can be viewed as a form of computing
under encryption, or, more specifically, as secret-sharing the input data and
computing on the shares. For example, an encryption Enck(m) of a message m
with a key k can be seen as secret-sharing m, where one share is k and the other
is Enck(m). We present several fundamental protocols illustrating a variety
of generic approaches to secure computation, as summarized in Table 3.1.
All of the protocols of this section target the semi-honest adversary model
(Section 2.3.2). We discuss malicious-secure variants in Chapter 6. All of these

protocol # parties # rounds circuit
Yao’s GC (Section 3.1) 2 constant Boolean
GMW (Section 3.2) many circuit depth Boolean or arithmetic
BGW (Section 3.3) many circuit depth Boolean or arithmetic
BMR (Section 3.5) many constant Boolean
GESS (Section 3.6) 2 constant Boolean formula

Table 3.1: Summary of semi-honest MPC protocols discussed in this chapter.

32

3.1. Yao’s Garbled Circuits Protocol 33

protocols build on oblivious transfer, which we discuss how to implement
efficiently in Section 3.7.

3.1 Yao’s Garbled Circuits Protocol

Yao’s Garbled Circuits protocol (GC) is the most widely known and celebrated
MPC technique. It is usually seen as best-performing, andmany of the protocols
we cover build on Yao’s GC. While not having the best known communication
complexity, it runs in constant rounds and avoids the costly latency associated
with approaches, such as GMW (described in Section 3.2), where the number
of communication rounds scales with the circuit depth.

3.1.1 GC Intuition

The main idea behind Yao’s GC approach is quite natural. Recall, we wish to
evaluate a given function F (x, y) where party P1 holds x ∈ X and P2 holds
y ∈ Y . Here X and Y are the respective domains for the inputs of P1 and P2.

Function as a look-up table. First, let’s consider a function F for which the
input domain is small and we can efficiently enumerate all possible input pairs,
(x, y). The function F can be represented as a look-up table T , consisting of
|X | · |Y | rows, Tx,y = 〈F (x, y)〉. The output of F (x, y) is obtained simply by
retrieving Tx,y from the corresponding row.

This gives us an alternative (and much simplified!) view of the task at
hand. Evaluating a look-up table can be done as follows. P1 will encrypt T
by assigning a randomly-chosen strong key to each possible input x and y.
That is, for each x ∈ X and each y ∈ Y , P1 will choose kx ∈R {0, 1}κ and
ky ∈R {0, 1}κ . It will then encrypt T by encrypting each element Tx,y of T
with both keys kx and ky , and send the encrypted (and randomly permuted!)
table 〈Enckx,ky (Tx,y)〉 to P2.

Now our task is to enable P2 to decrypt (only) the entry Tx,y corresponding
to players’ inputs. This is done by having P1 send to P2 the keys kx and ky . P1
knows its input x, and hence simply sends key kx to P2. The key ky is sent to
P2 using a 1-out-of-|Y | Oblivious Transfer (Section 2.4). Once P2 receives kx
and ky , it can obtain the output F (x, y) by decrypting Tx,y using those keys.
Importantly, no other information is obtained by P2. This is because P2 only

34 Fundamental MPC Protocols

has a single pair of keys, which can only be used to open (decrypt) a single
table entry. We stress that, in particular, it is important that neither partial key,
kx or ky , by itself can be used to obtain partial decryptions or even determine
whether the partial key was used in the obtaining a specific encryption.1

Point-and-Permute. A careful reader may wonder how P2 knows which row
of the table T to decrypt, as this information is dependent on the inputs of both
parties, and, as such, is sensitive.

The simplest way to address this is to encode some additional information
in the encrypted elements ofT . For example, P1 may append a string of σ zeros
to each row of T . Decrypting the wrong row will produce an entry which has
low probability (p = 1

2σ) of ending with σ zeros, and hence will be rejected
by P2.

While the above approach works, it is inefficient for P2, who expects to
need to decrypt half of the rows of the table T . A much better approach, often
called point-and-permute,2 was introduced by Beaver et al. (1990). The idea is
to interpret part of the key (namely, the last dlog |X |e bits of the first key and
the last dlog |Y |e bits of the second key) as a pointer to the permuted table T ,
where the encryption will be placed. To avoid collisions in table row allocation,
P1 must ensure that the pointer bits don’t collide within the space of keys kx or
within the space of ky; this can be done in a number of ways. Finally, strictly
speaking, key size must be maintained to achieve the corresponding level of
security. As a consequence, rather than viewing key bits as a pointer, players
will append the pointer bits to the key and maintain the desired key length.

In the subsequent discussions, we assume that the evaluator knows which
row to decrypt. In protocol presentations, we may or may not explicitly include
the point-and-permute component, depending on context.

1Consider a counter-example. Suppose P2 was able to determine that a key kx that it
received from P1 was used in encrypting rx rows. Because some input combinations may be
invalid, the encrypted look-up table T may have a unique number of rows relying on kx , which
will reveal x to P2, violating the required security guarantees.

2This technique was not given a name by Beaver et al. (1990). Rather, this name came
to be widely used by the community around 2010, as GC research progressed and need for a
name arose. This technique is different from the permute and point technique introduced and
coined in the information-theoretic garbled circuit construction of Kolesnikov (2005), which
we discuss in Section 3.6.

3.1. Yao’s Garbled Circuits Protocol 35

Managing look-up table size. Clearly, the above solution is inefficient as it
scales linearly with the domain size of F . At the same time, for small functions,
such as those defined by a single Boolean circuit gate, the domain has size 4,
so using a look-up table is practical.

The next idea is to represent F as a Boolean circuit C and evaluate each
gate using look-up tables of size 4. As before, P1 generates keys and encrypts
look-up tables, and P2 applies decryption keys without knowing what each key
corresponds to. However, in this setting, we cannot reveal the plaintext output
of intermediate gates. This can be hidden by making the gate output also a key
whose corresponding value is unknown to the evaluator, P2.

For each wire wi of C, P1 assigns two keys k0
i and k1

i , corresponding to
the two possible values on the wire. We will refer to these keys as wire labels,
and to the plaintext wire values simply as wire values. During the execution,
depending on the inputs to the computation, each wire will be associated with
a specific plaintext value and a corresponding wire label, which we will call
active value and active label. We stress that the evaluator can know only the
active label, but not its corresponding value, and not the inactive label.

Then, going through C, for each gate G with input wires wi and wj , and
output wire wt , P1 builds the following encrypted look-up table:

TG =

©«

Enck0
i ,k

0
j
(kG(0,0)t)

Enck0
i ,k

1
j
(kG(0,1)t)

Enck1
i ,k

0
j
(kG(1,0)t)

Enck1
i ,k

1
j
(kG(1,1)t)

ª®®®®®®¬
For example, if G is an AND gate, the look-up table will be:

TG =

©«
Enck0

i ,k
0
j
(k0

t)
Enck0

i ,k
1
j
(k0

t)
Enck1

i ,k
0
j
(k0

t)
Enck1

i ,k
1
j
(k1

t)

ª®®®®®®¬
Each cell of the look-up table encrypts the label corresponding to the

output computed by the gate. Crucially, this allows the evaluator P2 to obtain
the intermediate active labels on internal circuit wires and use them in the
evaluation of F under encryption without ever learning their semantic value.

36 Fundamental MPC Protocols

P1 permutes the entries in each of the look-up tables (usually called garbled
tables or garbled gates), and sends all the tables to P2. Additionally, P1 sends
(only) the active labels of all wires corresponding to the input values to P2. For
input wires belonging to P1’s inputs to F , this is done simply by sending the
wire label keys. For wires belonging to P2’s inputs, this is done via 1-out-of-2
Oblivious Transfer.

Upon receiving the input keys and garbled tables, P2 proceeds with the
evaluation. As discussed above, P2 must be able to decrypt the correct row
of each garbled gate. This is achieved by the point-and-permute technique
described above. In our case of a 4-row garbled table, the point-and-permute
technique is particularly simple and efficient — one pointer bit is needed for
each input, so there are two total pointer bits added to each entry in the garbled
table. Ultimately, P2 completes evaluation of the garbled circuit and obtains
the keys corresponding to the output wires of the circuit. These could be sent
to P1 for decryption, thus completing the private evaluation of F .

We note that a round of communication may be saved and sending the
output labels by P2 for decryption by P1 can be avoided. This can be done
simply by P1 including the decoding tables for the output wires with the garbled
circuit it sends. The decoding table is simply a table mapping each label on
each output wire to its semantics (i.e. the corresponding plaintext value. Now,
P2 obtaining the output labels will look them up in the decoding table and
obtain the output in plaintext.

At an intuitive level, at least, it is easy to see that this circuit-based
construction is secure in the semi-honest model. Security against a corrupt
P1 is easy, since (other than the OT, which we assume has been separately
shown to satisfy the OT security definition) that party receives no messages
in the protocol! For a corrupt P2, security boils down to the observation that
the evaluator P2 never sees both labels for the same wire. This is obviously
true for the input wires, and it holds inductively for all intermediate wires
(knowing only one label on each incoming wire of the gate, the evaluator
can only decrypt one ciphertext of the garbled gate). Since P2 does not know
the correspondence between plaintext values and the wire labels, it has no
information about the plaintext values on the wires, except for the output wires
where the association between labels and values is explicitly provided by P1.
To simulate P2’s view, the simulator SimP2 chooses random active labels for

3.2. Goldreich-Micali-Wigderson (GMW) Protocol 37

each wire, simulates the three “inactive” ciphertexts of each garbled gate as
dummy ciphertexts, and produces decoding information that decodes the active
output wires to the function’s output.

3.1.2 Yao’s GC Protocol

Figure 3.1 formalizes Yao’s gate generation, and Figure 3.2 summarizes Yao’s
GC protocol. For simplicity of presentation, we describe the protocol variant
based on Random Oracle (defined in Section 2.2), even though a weaker
assumption (the existence of pseudo-random functions) is sufficient for Yao’s
GC construction. The Random Oracle, denoted by H, is used in implementing
garbled row encryption. We discuss different methods of instantiating H
in Section 4.1.4. The protocol also uses Oblivious Transfer, which requires
public-key cryptography.

For each wire label, a pointer bit, pi, is added to the wire label key
following the point-and-permute technique described in Section 3.1.1. The
pointer bits leak no information since they are selected randomly, but they
allow the evaluator to determine which row in the garbled table to decrypt,
based on the pointer bits for the two active wires it has for the inputs. In
Section 4.1 we discuss several ways for making Yao’s GC protocol more
efficient, including reducing the size of the garbled table to just two ciphertexts
per gate (Section 4.1.3) and enabling XOR gates to be computed without
encryption (Section 4.1.2).

3.2 Goldreich-Micali-Wigderson (GMW) Protocol

As noted before, computation under encryption can be naturally viewed as
operating on secret-shared data. In Yao’s GC, the secret sharing of the active
wire value is done by having one player (generator) hold two possible wire
labels w0

i ,w
1
i , and the other player (evaluator) hold the active label wb

i . In the
GMW protocol (Goldreich et al., 1987; Goldreich, 2004), the secret-sharing
of the wire value is more direct: the players hold additive shares of the active
wire value.

The GMW protocol (or just “GMW”) naturally generalizes to more than
two parties, unlike Yao’s GC, which requires novel techniques to generalize to
more than two parties (see Section 3.5).

38 Fundamental MPC Protocols

Parameters:
Boolean circuit C implementing function F , security parameter κ.

GC generation:

1. Wire Label Generation. For each wire wi of C, randomly choose wire
labels,

wb
i = (kb

i ∈R {0, 1}κ, pbi ∈R {0, 1}),
such that pbi = 1 − p1−b

i .

2. Garbled Circuit Construction. For each gate Gi of C in topological
order:

(a) Assume Gi is a 2-input Boolean gate implementing function gi:
wc = gi(wa,wb), where input labels are w0

a = (k0
a, p0

a),w1
a =

(k1
a, p1

a),w0
b
= (k0

b
, p0

b
),w1

b
= (k1

b
, p1

b
), and the output labels are

w0
c = (k0

c, p0
c),w1

c = (k1
c, p1

c).
(b) Create Gi’s garbled table. For each of 22 possible combinations of

Gi’s input values va, vb ∈ {0, 1}, set

eva,vb = H(kva
a | | k

vb
b
| | i) ⊕ w

gi (va,vb)
c

Sort entries e in the table by the input pointers, placing entry eva,vb
in position 〈pvaa , pvb

b
〉.

3. Output Decoding Table. For each circuit-output wire wi (the output of
gate G j) with labels w0

i = (k0
i , p0

i),w1
i = (k1

i , p1
i), create garbled output

table for both possible wire values v ∈ {0, 1}. Set

ev = H(kv
i | | “out” | | j) ⊕ v

(Because we are xor-ing with a single bit, we just use the lowest bit of the
output of H for generating the above ev.) Sort entries e in the table by
the input pointers, placing entry ev in position pvi . (There is no conflict,
since p1

i = p0
i ⊕ 1.)

Figure 3.1: Yao’s Garbled Circuit protocol: GC generation

3.2. Goldreich-Micali-Wigderson (GMW) Protocol 39

Parameters: Parties P1 and P2 with inputs x ∈ {0, 1}n and y ∈ {0, 1}n
respectively. Boolean circuit C implementing function F .

Protocol:

1. P1 plays the role of GC generator and runs the algorithm of Figure 3.1.
P1 then sends the obtained GC Ĉ (including the output decoding table)
to P2.

2. P1 sends to P2 active wire labels for the wires on which P1 provides
input.

3. For each wire wi on which P2 provides input, P1 and P2 execute an
Oblivious Transfer (OT) where P1 plays the role of the Sender, and P2
plays the role of the Receiver:

(a) P1’s two input secrets are the two labels for the wire, and P2’s
choice-bit input is its input on that wire.

(b) Upon completion of the OT, P2 receives active wire label on the
wire.

4. P2 evaluates received Ĉ gate-by-gate, starting with the active labels on
the input wires.

(a) For gate Gi with garbled table T = (e0,0, ...e1,1) and active input
labels wa = (ka, pa),wb = (kb, pb), P2 computes active output
label wc = (kc, pc):

wc = H(ka | | kb | | i) ⊕ epa,pb

5. Obtaining output using output decoding tables. Once all gates of Ĉ are
evaluated, using “out” for the second key to decode the final output
gates, P2 obtains the final output labels which are equal to the plaintext
output of the computation. P2 sends the obtained output to P1, and they
both output it.

Figure 3.2: Yao’s Garbled Circuit Protocol

40 Fundamental MPC Protocols

3.2.1 GMW Intuition

The GMW protocol can work both on Boolean and arithmetic circuits. We
present the two-party Boolean version first, and then briefly explain how the
protocol can be generalized to more than two parties. As with Yao’s protocol,
we assume players P1 with input x and P2 with input y have agreed on the
Boolean circuit C representing the computed function F (x, y).

The GMW protocol proceeds as follows. For each input bit xi ∈ {0, 1} of
x ∈ {0, 1}n, P1 generates a random bit ri ∈R {0, 1} and sends all ri to P2. Next,
P1 obtains a secret sharing of each xi between P1 and P2 by setting its share to
be xi ⊕ ri . Symmetrically, P2 generates random bit masks for its inputs yi and
sends the masks to P1, secret sharing its input similarly.

P1 and P2 proceed in evaluating C gate by gate. Consider gate G with input
wires wi and wj and output wire wk . The input wires are split into two shares,
such that s1

x ⊕ s2
x = wx . Let P1 holds shares s1

i and s1
j on wi and wj , and P2

hold shares s2
i and s2

j on the two wires. Without loss of generality, assume C
consists of NOT, XOR and AND gates.

Both NOT and XOR gates can be evaluated without any interaction. A NOT
gate is evaluated by P1 flipping its share of the wire value, which flips the
shared wire value. An XOR gate on wires wi and wj is evaluated by players
xor-ing the shares they already hold. That is, P1 computes its output share as
s1
k
= s1

i ⊕ s1
j , and P2 correspondingly computes its output share as s2

k
= s2

i ⊕ s2
j .

The computed shares, s1
k
, s2

k
, indeed are shares of the active output value:

s1
k
⊕ s2

k
= (s1

i ⊕ s1
j) ⊕ (s2

i ⊕ s2
j) = (s1

i ⊕ s2
i) ⊕ (s1

j ⊕ s2
j) = wi ⊕ wj .

Evaluating an AND gate requires interaction and uses 1-out-of-4 OT a
basic primitive. From the point of view of P1, its shares s1

i , s
1
j are fixed, and P2

has two Boolean input shares, which means there are four possible options for
P2. If P1 knew P2’s shares, then evaluating the gate under encryption would
be trivial: P1 can just reconstruct the active input values, compute the active
output value and secret-share it with P2. While P1 cannot do that, it can do the
next best thing: prepare such a secret share for each of P2’s possible inputs,
and run 1-out-of-4 OT to transfer the corresponding share. Specifically, let

S = Ss1
i ,s

1
j
(s2

i , s
2
j) = (s1

i ⊕ s2
i) ∧ (s1

j ⊕ s2
j)

be the function computing the gate output value from the shared secrets on
the two input wires. P1 chooses a random mask bit r ∈R {0, 1} and prepares a

3.2. Goldreich-Micali-Wigderson (GMW) Protocol 41

table of OT secrets:

TG =
©«
r ⊕ S(0, 0)
r ⊕ S(0, 1)
r ⊕ S(1, 0)
r ⊕ S(1, 1)

ª®®®®¬
Then P1 and P2 run an 1-out-of-4 OT protocol, where P1 plays the role of the
sender, and P2 plays the role of the receiver. P1 uses table rows as each of the
four input secrets, and P2 uses its two bit shares as the selection to choose the
corresponding row. P1 keeps r as its share of the gate output wire value, and
P2 uses the value it receives from the OT execution.

Because of the way the OT inputs are constructed, the players obtain a
secret sharing of the gate output wire. At the same time, it is intuitively clear
that the players haven’t learned anything about the other player’s inputs or the
intermediate values of the computation. This is because effectively only P2
receives messages, and by the OT guarantee, it learns nothing about the three
OT secrets it did not select. The only thing it learns is its OT output, which
is its share of a random sharing of the output value and therefore leaks no
information about the plaintext value on that wire. Likewise, P1 learns nothing
about the selection of P2.

After evaluating all gates, players reveal to each other the shares of the
output wires to obtain the output of the computation.

Generalization to more than two parties. We now sketch how to generalize
this to the setting where n players P1,P2, . . . ,Pn evaluate a boolean circuit F .
As before, player Pj secret-shares its input by choosing ∀i , j, ri ∈R {0, 1},
and sending ri to each Pi . The parties P1,P2, . . . ,Pn proceed by evaluating C
gate-by-gate. They evaluate each gate G as follows:

• For an XOR gate, the players locally add their shares. Like the two-party
case, no interaction is required and correctness and security are assured.

• For an AND gate c = a ∧ b, let a1, . . . , an, b1, . . . , bn denote the shares

42 Fundamental MPC Protocols

of a, b respectively held by the players. Consider the identity

c = a ∧ b = (a1 ⊕ · · · ⊕ an) ∧ (b1 ⊕ · · · ⊕ bn)

=

(
n⊕
i=1

ai ∧ bi

)
⊕

(⊕
i,j

ai ∧ bj

)
Each playerPj computes aj∧bj locally to obtain a sharing of

⊕n
i=1 ai∧bi .

Further, each pair of players Pi , Pj jointly computes the shares of ai ∧ bj

as described above in the two-party GMW. Finally, each player outputs
the XOR of all obtained shares as the sharing of the result a ∧ b.

3.3 BGW protocol

One of the first multi-party protocols for secure computation is due to Ben-Or,
Goldwasser, and Wigderson (Ben-Or et al., 1988), and is known as the “BGW”
protocol. Another somewhat similar protocol of Chaum, Crépau, and Damgård
was published concurrently (Chaum et al., 1988) with BGW, and the two
protocols are often considered together. For concreteness, we present here the
BGW protocol for n parties, which is somewhat simpler.

The BGW protocol can be used to evaluate an arithmetic circuit over a
field F, consisting of addition, multiplication, and multiplication-by-constant
gates. The protocol is heavily based on Shamir secret sharing (Shamir, 1979),
and it uses the fact that Shamir secret shares are homomorphic in a special
way—the underlying shared value can be manipulated obliviously, by suitable
manipulations to the individual shares.

For v ∈ F we write [v] to denote that the parties hold Shamir secret shares
of a value v. More specifically, a dealer chooses a random polynomial p of
degree at most t, such that p(0) = v. Each party Pi then holds value p(i) as
their share. We refer to t as the threshold of the sharing, so that any collection
of t shares reveals no information about v.

The invariant of the BGW protocol is that for every wire w in the arithmetic
circuit, the parties hold a secret-sharing [vw] of the value vw on that wire. Next,
we sketch the protocol with a focus on maintaining this invariant.

Input wires. For an input wire belonging to party Pi, that party knows the
value v on that wire in the clear, and distributes shares of [v] to all the parties.

3.3. BGW protocol 43

Addition gate. Consider an addition gate, with input wires α, β and output
wire γ. The parties collectively hold sharings of incoming wires [vα] and [vβ],
and the goal is to obtain a sharing of [vα + vβ]. Suppose the incoming sharings
correspond to polynomials pα and pβ, respectively. If each party Pi locally
adds their shares pα(i) + pβ(i), then the result is that each party holds a point
on the polynomial pγ(x)

def
= pα(x) + pβ(x). Since pγ also has degree at most t,

these new values comprise a valid sharing pγ(0) = pα(0) + pβ(0) = vα + vβ .
Note that addition gates require no communication among the parties. All

steps are local computation. The same idea works to multiply a secret-shared
value by a public constant — each party simply locally multiplies their share
by the constant.

Multiplication gate. Consider a multiplication gate, with input wires α, β
and output wire γ. The parties collectively hold sharings of incoming wires
[vα] and [vβ], and the goal is to obtain a sharing of the product [vα · vβ]. As
above, the parties can locally multiply their individual shares, resulting in each
party holding a point on the polynomial q(x) = pα(x) · pβ(x). However, in this
case the resulting polynomial may have degree as high as 2t which is too high.

In order to fix the excessive degree of this secret sharing, the parties engage
in a degree-reduction step. Each party Pi holds a value q(i), where q is a
polynomial of degree at most 2t. The goal is to obtain a valid secret-sharing of
q(0), but with correct threshold.

The main observation is that q(0) can be written as a linear function of the
party’s shares. In particular,

q(0) =
2t+1∑
i=1

λiq(i)

where the λi terms are the appropriate Lagrange coefficients. Hence the
degree-reduction step works as follows:

1. Each party3 Pi generates and distributes a threshold-t sharing of [q(i)].
To simplify the notation, we do not give names to the polynomials that
underly these shares. However, it is important to keep in mind that
each party Pi chooses a polynomial of degree at most t whose constant
coefficient is q(i).

3Technically, only 2t + 1 parties need to do this.

44 Fundamental MPC Protocols

2. The parties compute [q(0)] = ∑2t+1
i=1 λi[q(i)], using local computations.

Note that the expression is in terms of addition and multiplication-by-
constant applied to secret-shared values.

Since the values [q(i)] were shared with threshold t, the final sharing of [q(0)]
also has threshold t, as desired.

Note that multiplication gates in the BGW protocol require communica-
tion/interaction, in the form of parties sending shares of [q(i)]. Note also that
we require 2t + 1 ≤ n, since otherwise the n parties do not collectively have
enough information to determine the value q(0), as q may have degree 2t. For
that reason, the BGW protocol is secure against t corrupt parties, for 2t < n
(i.e., an honest majority).

Output wires. For an output wire α, the parties will eventually hold shares
of the value [vα] on that wire. Each party can simply broadcast its share of this
value, so that all parties can learn vα.

3.4 MPC From Preprocessed Multiplication Triples

A convenient paradigm for constructing MPC protocols is to split the problem
into a pre-processing phase (before the parties’ inputs are known) and an online
phase (after the inputs are chosen). The pre-processing phase can produce
correlated values for the parties, which they can later “consume” in the online
phase. This paradigm is also used in some of the leading malicious-secure
MPC protocols discussed in Chapter 6.

Intuition. To get an idea of how to defer some of the protocol effort to
the pre-processing phase, recall the BGW protocol. The only real cost in
the protocol is the communication that is required for every multiplication
gate. However, it is not obvious how to move any of the related costs to a
pre-processing phase, since the costs are due to manipulations of secret values
that can only be determined in the online phase (i.e., they are based on the
circuit inputs). Nonetheless, Beaver (1992) showed a clever way to move the
majority of the communication to the pre-processing phase.

A Beaver triple (or multiplication triple) refers to a triple of secret-shared
values [a], [b], [c] where a and b are randomly chosen from the appropriate

3.4. MPC From Preprocessed Multiplication Triples 45

field, and c = ab. In an offline phase, such Beaver triples can be generated
in a variety of ways, such as by simply running the BGW multiplication
subprotocol on random inputs. One Beaver triple is then “consumed” for each
multiplication gate in the eventual protocol.

Consider a multiplication gate with input wires α, β. The parties hold
secret sharings of [vα] and [vβ]. To carry out the multiplication of vα and vβ
using a Beaver triple [a], [b], [c], the parties do the following:

1. Using local computation, compute [vα−a] and publicly open d = vα−a
(i.e., all parties announce their shares). While this value depends on the
secret value vα, it is masked by the random value a and therefore reveals
no information about vα.4

2. Using local computation, compute [vβ − b] and publicly open e = vβ − b.

3. Observe the following identity:

vαvβ = (vα − a + a)(vβ − b + b)
= (d + a)(e + b)
= de + db + ae + ab

= de + db + ae + c

Since d and e are public, and the parties hold sharings of [a], [b], [c],
they can compute a sharing of [vαvβ] by local computation only:

[vαvβ] = de + d[b] + e[a] + [c]

Using this technique, amultiplication can be performed using only two openings
plus local computation. Overall, each party must broadcast two field elements
per multiplication, compared to n field elements (across private channels) in
the plain BGW protocol. While this comparison ignores the cost of generating
the Beaver triples in the first place, there are methods for generating triples in
a batch where the amortized cost of each triple is a constant number of field
elements per party (Beerliová-Trubíniová and Hirt, 2008).

4Since a is used as essentially a one-time pad (and b similarly below), this triple [a], [b], [c]
cannot be reused again in a different multiplication gate.

46 Fundamental MPC Protocols

Abstraction. While the BGW protocol (specifically, its degree-reduction
step) deals with the details of Shamir secret shares, the Beaver-triples approach
conveniently abstracts these away. In fact, it works as long as the parties have
an abstract “sharing mechanism” [v] with the following properties:

• Additive homomorphism: Given [x] and [y] and a public value z, parties
can obtain any of [x + y], [x + z], [xz], without interaction.

• Opening: Given [x], parties can choose to reveal x to all parties.

• Privacy: An adversary (from whatever class of adversaries is being
considered) can get no information about x from [x].

• Beaver triples: For each multiplication gate, the parties have a random
triple [a], [b], [c] where c = ab.

• Random input gadgets: For each input wire belonging to party Pi, the
parties have a random [r], where r is known only to Pi. During the
protocol, when Pi chooses its input value x for this wire, it can announce
δ = x − r to all parties (leaking nothing about x), and they can locally
compute [x] = [r] + δ from the homomorphic properties.

As long as these properties are true of an abstract sharing mechanism,
the Beaver-triples approach is secure. In fact, the paradigm is also secure in
the presence of malicious adversaries, as long as the opening and privacy
properties of the sharing mechanism hold against such adversaries. Specifically,
a malicious adversary cannot falsify the opening of a shared value. We use
this fact later in Section 6.6.

Instantiations. Clearly Shamir secret sharing gives rise to an abstract sharing
scheme [·] that satisfies the above properties with respect to adversaries who
corrupt at most t < n/2 parties.

Another suitable method of sharing is simple additive sharing over a field F.
In additive sharing, [v] signifies that each party Pi holds vi where

∑n
i=1 vi = v.

This mechanism satisfies the appropriate homomorphic properties, and is
secure against n − 1 corrupt parties. When using F = {0, 1}, we obtain an
offline-online variant of the GMW protocol (since the field operations in this
case correspond to AND and XOR). Of course, an arbitrary F is possible as
well, leading to a version of GMW for arithmetic circuits.

3.5. Constant-Round Multi-Party Computation: BMR 47

3.5 Constant-Round Multi-Party Computation: BMR

After Yao’s (two-party) GC protocol was proposed, several multi-party pro-
tocols appeared, including Goldreich-Micali-Wigderson (GMW) (Goldreich,
2004; Goldreich et al., 1987), presented in detail above in Section 3.2, Ben
Or-Goldwasser-Wigderson (BGW) (Ben-Or et al., 1988), Chaum-Crepeau-
Damgård (CCD) (Chaum et al., 1988). All of these protocols have a number
of rounds linear in the depth of the circuit C computing F . The Beaver-Micali-
Rogaway (BMR) protocol (Beaver et al., 1990) runs in a constant (in the depth
of the circuit C) number of rounds, while achieving security against any t < n
number of corruptions among the n participating parties.

3.5.1 BMR Intuition

The BMR protocols adapt the main idea of Yao’s GC to a multi-party setting.
GC is chosen as a starting point due to its round-efficiency. However, a naïve
attempt to port the GC protocol from the 2PC into the MPC setting gets stuck
at the stage of sending the generated GC to the evaluators. Indeed, the circuit
generator knows all the secrets (wire label correspondences), and if it colludes
with any of the evaluators, the two colluding parties can learn the intermediate
wire values and violate the security guarantees of the protocol.

The basic BMR idea is to perform a distributed GC generation, so that no
single party (or even a proper subset of all parties) knows the GC generation
secrets – the label assignment and correspondence. This GC generation can be
done in parallel for all gates using MPC. This is possible by first generating
(in parallel) all wire labels independently, and then independently and in
parallel generating garbled gate tables. Because of parallel processing for all
gates and wires, the number of communication rounds for the GC generation
is independent of the depth of the computed circuit C. As a result, the GC
generation circuit CGEN is constant-depth for all computed circuits C (once the
security parameter κ is fixed). Even if the parties perform MPC evaluation of
CGEN that depends on the depth of CGEN, the overall BMR protocol will still
have constant rounds overall.

The MPC output, the GC produced by securely evaluating CGEN, may be
delivered to a designated player, say P1, who will then evaluate it similarly to
Yao’s GC. The final technicality here is how to deliver the active input labels

48 Fundamental MPC Protocols

to P1. There are several ways how this may be achieved, depending on how
exactly the MPC GC generation proceeded. Perhaps, it is conceptually simplest
to view this as part of the GC generation computation.

In concrete terms, the above approach is not appealing due to potentially
high costs of distributed generation of encryption tables, requiring the garbled
row encryption function (instantiated as a PRF or hash function) evaluation
inside MPC. Several protocols were proposed, which allow the PRF/hash
evaluation to be extracted from inside the MPC and instead be done locally
by the parties while providing the output of PRF/hash into the MPC. The
underlying idea of such an approach is to assign different portions of each
label to be generated by different players. That is, a wire wa’s labels wv

a are a
concatenation of sublabels wv

a, j each generated by Pj . Then, for a gate Gi with
input labels wva

a ,w
vb
b

and the output label wvc
c , the garbled row corresponding

to input values va, vb and output value vc can simply be:

eva,vb = wvc
c

⊕
j=1..n
(F(i,wva

a, j) ⊕ F(i,wvb
b, j
)), (3.1)

where F is a PRF, indexed by the gate index, extending κ + 1 input bits into
n · (κ + 1) bits.

The generation of the garbled table row is almost entirely done locally
by each party. Each Pj computes F(i,wva

a, j) ⊕ F(i,wvb
b, j
) and submits it to the

MPC, which simply xors all the values to produce the garbled row.
However, we are not quite done. Recall that the GC evaluator P1 will

reconstruct active labels. A careful reader would notice that knowledge of its
own contributed sublabel will allow it to identify which plaintext value the
active label corresponds to, violating the security guarantee.

The solution is for each player Pj to add a “flip” bit fa, j to each wire wa.
The xor of the n flip bits, fa =

⊕
j=1..n fa, j , determines which plaintext bit

corresponds to the wire label wv
a. The flip bits will be an additional input into

the garbling MPC. Now, with the addition of the flip bits, no subset of players
will know the wire flip bit, and hence even the recognition and matching of the
sublabel will not allow the evaluator to match the label to plaintext value, or to
compute the inactive label in full.

We sketch a concrete example of an efficient BMR garbling in Figure 3.3;
BMR evaluation is straightforward based on the garbling technique.

3.5. Constant-Round Multi-Party Computation: BMR 49

Parameters: Boolean circuit C implementing function F .
Let F : id, {0, 1}κ+1 7→ {0, 1}n ·(κ+1) be a PRF.

Players: P1, P2, ..., Pn with inputs x1, ..., xn ∈ {0, 1}k .

GC generation:
1. For each wire wi of C, each Pj randomly chooses wire sublabels,

wb
i, j = (kb

i, j, pbi, j) ∈R {0, 1}κ+1, such that pbi, j = 1 − p1−b
i, j , and flip-

bit shares fi, j ∈R {0, 1}. For each wire wi, Pj locally computes its
underlying-MPC input,

Ii, j = (F(i,w0
i, j), F(i,w1

i, j), p0
i, j, fi, j).

2. For each gate Gi of C in parallel, all players participate in n-party MPC
to compute the garbled table, taking as input all players’ inputs x1, ..., xn
as well as pre-computed values Ii, j , by evaluating the following function:

1. Assume Gi is a 2-input Boolean gate implementing function g,
with input wires wa,wb and output wire wc.

2. Compute pointer bits p0
a =

⊕
j=1..n p0

a, j, p0
b
=

⊕
j=1..n p0

b, j
, p0

c =⊕
j=1..n p0

c, j , and set p1
a = 1 − p0

a, p1
b
= 1 − p0

b
, p1

c = 1 − p0
c.

Similarly compute flip bits fa, fb, fc by xor-ing the corresponding
flip bit shares submitted by the parties. Amend the semantics of
the wires according to the flip bits by xor-ing fa, fb, fc in the label
index as appropriate (included in the next steps).

3. Create Gi’s garbled table. For each of 22 possible combinations of
Gi’s input values, va, vb ∈ {0, 1}, set

eva,vb = w
vc ⊕ fc
c

⊕
j=1..n
(F(i,wva ⊕ fa

a, j) ⊕ F(i,wvb ⊕ fb
b, j

)),

where w0
c = w0

c,1 | | . . . | | w
0
c,n | | p0

c,w
1
c = w1

c,1 | | . . . | | w
1
c,n | | p1

c .

Sort entries e in the table, placing entry eva,vb in position (pvaa , pvb
b
).

4. Output to P1 the computed garbled tables, as well as active wire
labels inputs of C, as selected by players’ inputs, x1, ..., xn.

Figure 3.3: BMR Multi-Party GC Generation

50 Fundamental MPC Protocols

3.6 Information-Theoretic Garbled Circuits

Yao’s GC and the GMW protocol present two different flavors of the use of
secret sharing in MPC. In this section, we discuss a third flavor, where the
secrets are shared not among players, but among wires. This construction
is also interesting because it provides information-theoretic security in the
OT-hybrid setting, meaning that no computational hardness assumptions are
used in the protocol beyond what is used in the underlying OT. An important
practical reason to consider IT GC is that it presents a trade-off between
communication bandwidth and latency: it needs to send less data than Yao
GC at the cost of additional communication rounds. While most research on
practical MPC focuses on low round complexity, we believe some problems
which require very wide circuits, such as those that arise in machine learning,
may benefit from IT GC constructions.

Information-theoretic constructions typically provide stronger security
at a higher cost. Surprisingly, this is not the case here. Intuitively, higher
performance is obtained because information-theoretic encryption allows the
encryption of a bit to be a single bit rather than a ciphertext whose length
scales with the security parameter. Further, information-theoretic encryption
here is done with bitwise XOR and bit shufflings, rather than with standard
primitives such as AES.

We present the Gate Evaluation Secret Sharing (GESS) scheme of
Kolesnikov (2005) (Kolesnikov (2006) provides details), which is the most
efficient information-theoretic analog of GC. The main result of Kolesnikov
(2005) is a two-party protocol for a Boolean formula F with communication
complexity ≈ ∑

d2
i , where di is the depth of the i-th leaf of F.

At a high level, GESS is a secret-sharing scheme, designed to allow
evaluation under encryption of a Boolean gate G. The output wire labels
of G are the two secrets from which P1 produces four secret shares, one
corresponding to each of the wire labels of the two input wires. GESS
guarantees that a valid combination of shares (one share per wire) can be used
to reconstruct the corresponding label of the output wire. This is similar to
Yao’s GC, but GESS does not require the use of garbled tables, and hence can
be viewed as a generalization of Yao’s GC. Similarly to Yao’s GC approach,
the secret sharing can be applied gate-by-gate without the need to decode or
reconstruct the plaintext values.

3.6. Information-Theoretic Garbled Circuits 51

Consider a two-input Boolean gate G. Given the possible output values
s0, s1 and the semantics of the gate G, P1 generates input labels (sh10, sh11),
(sh20, sh21), such that each possible pair of encodings (sh1,i, sh2, j) where
i, j ∈ {0, 1}, allows reconstructing G(i, j) but carries no other information.
Now, if P2 obtains shares corresponding to gate inputs, it would be able to
reconstruct the label on the output wire, and nothing else.

This mostly corresponds to our intuition of secret sharing schemes. Indeed,
the possible gate outputs play the role of secrets, which are shared and then
reconstructed from the input wires encodings (shares).

3.6.1 GESS for Two-Input Binary Gates

We present GESS for the 1-to-1 gate function G : {0, 1}2 7→ {00, 01, 10, 11},
where G(0, 0) = 00,G(0, 1) = 01,G(1, 0) = 10,G(1, 1) = 11. Clearly, this is a
generalization of the Boolean gate functionality G : {0, 1}2 7→ {0, 1}.

Let the secrets domain beDS = {0, 1}n, and four (not necessarily distinct)
secrets s00, ...s11 ∈ DS are given. The secret si j corresponds to the value
G(i, j) of the output wire.

The intuition for the design of the GESS scheme is as follows (see
illustration in Figure 3.4). We first randomly choose two strings R0, R1 ∈R DS
to be the shares sh10 and sh11 (corresponding to 0 and 1 of the first input wire).
Now consider sh20, the share corresponding to 0 of the second input wire. We
want this share to produce either s00 (when combined with sh10) or s10 (when
combined with sh11). Thus, the share sh20 will consist of two blocks. One,
block s00 ⊕ R0, is designed to be combined with R0 and reconstruct s00. The
other, s10 ⊕ R1, is designed to be combined with R1 and reconstruct s10. Share
sh21 is constructed similarly, setting blocks to be s01 ⊕ R0 and s11 ⊕ R1.

Both leftmost blocks are designed to be combined with the same share
R0, and both rightmost blocks are designed to be combined with the same
share R1. Therefore, we append a 0 to R0 to tell Rec to use the left block of the
second share for reconstruction, and append a 1 to R1 to tell Rec to use the
right block of the second share for reconstruction. Finally, to hide information
leaked by the order of blocks in shares, we randomly choose a bit b and if
b = 1 we reverse the order of blocks in both shares of wire 2 and invert the
appended pointer bits of the shares of wire 1. Secret reconstruction proceeds
by xor-ing the wire-1 share (excluding the pointer bit) with the first or second

52 Fundamental MPC Protocols

sh10, sh11 sh20, sh21

G

s0, s1

Figure 3.4: GESS for Boolean gate

half of the wire-2 share as indexed by the pointer bit.

3.6.2 Reducing Share Growth

Note the inefficiency of the above construction, causing the shares correspond-
ing to the second input wire be double the size of the gate’s secrets. While,
in some circuits we can avoid the exponential (in depth) secret growth by
balancing the direction of greater growth toward more shallow parts of the
circuit, a more efficient solution is desirable. We discuss only AND and OR
gates, since NOT gates are implemented simply by flipping the wire label
semantics by the Generator.GESS also enables XOR gates without any increase
the share sizes. We defer discussion of this to Section 4.1.2, because the XOR
sharing in GESS led to an important related improvement for Yao’s GC.

For OR and AND gates in the above construction, either the left or the right
blocks of the two shares are equal (this is because s00 = s01 for the AND gate,
and s10 = s11 for the OR gate). We use this property to reduce the size of the
shares when the secrets are of the above form. The key idea is to view the

3.6. Information-Theoretic Garbled Circuits 53

shares of the second wire as being the same, except for one block.
Suppose each of the four secrets consists of n blocks and the secrets differ

only in the j th block, as follows:
s00 = (t1 . . . tj−1 t00

j tj+1 . . . tn),
...

s11 = (t1 . . . tj−1 t11
j tj+1 . . . tn),

where ∀i = 1..n: ti, t00
j , t

01
j , t

10
j , t

11
j ∈ {0, 1}k for some k. It is convenient

to consider the columns of blocks, spanning across the shares. Every column
(with the exception of the j-th) consists of four equal blocks, where the value
j is private.

For simplicity, we show the main ideas by considering a special case
where the four secrets consist of n = 3 blocks each, and j = 2 is the index of
the column of distinct blocks. This intuition is illustrated on Figure 3.5. The
scheme naturally generalizes from this intuition; Kolesnikov (2005) provides a
formal presentation.

The idea is to share the secrets “column-wise”, treating each of the three
columns of blocks of secrets as a tuple of subsecrets and sharing this tuple
separately, producing the corresponding subshares. Consider sharing column 1.
All four subsecrets are equal (to t1), and we share them trivially by setting both
subshares of the first wire to a random string R1 ∈R DS , and both subshares of
the second wire to be R1 ⊕ t1. Column 3 is shared similarly. We share column
2 as in previous construction (highlighted on the diagram), omitting the last
step of appending the pointers and applying the permutation. This preliminary
assignment of shares (still leaking information due to order of blocks) is shown
on Figure 3.5.

Note that the reconstruction of secrets is done by xor-ing the corresponding
blocks of the shares, and, importantly, the procedure is the same for both types
of sharing we use. For example, given shares sh10 and sh21, we reconstruct
the secret s01 = (R1 ⊕ (R1 ⊕ t1), R2 ⊕ (R2 ⊕ t01

2), R3 ⊕ (R3 ⊕ t3)).
The remaining permute-and-point step is to apply (the same) random

permutation π to reorder the four columns of both shares of wire 2 and to
append (log 4)-bit pointers to each block of the shares of wire 1, telling the
reconstructor which block of the second share to use. Note that the pointers
appended to both blocks of column 1 of wire 1 are the same. The same holds

54 Fundamental MPC Protocols

Figure 3.5: Improved GESS for Boolean gate

for column 3. Pointers appended to blocks of column 2 are different. For
example, if the identity permutation was applied, then we will append “1” to
both blocks R1, “2” to R2, “3” to R′2, and “4” to both blocks R3. This leads to
the punchline: because G is either an OR or an AND gate, both tuples of shares
maintain the property that all but one of the pairs of corresponding blocks are
equal between the shares of the tuple. This allows repeated application (i.e.,
continuing sharing) of GESS for OR and AND gates.

Finally, to put it all together, we sketch the GESS-based MPC protocol.
P1 represents the function F as a formula F. Then, starting with the output
wires of F and taking the plaintext output wire labels as secrets, P1 applies
GESS scheme repeatedly to all gates of the circuit, assigning the GESS shares
to gates’ input wires until he assigns the labels to formula inputs. Then, P1
transfers to P2 active labels on the input wires, and P2 repeatedly uses GESS
reconstruction procedure to obtain output labels of F.

3.7 Oblivious Transfer

Oblivious Transfer, defined in Section 2.4, is an essential building block for
secure computation protocols, and an inherently asymmetric primitive. Impagli-
azzo and Rudich (1989) showed that a reduction from OT to a symmetric-key
primitive (one-way functions, PRF) implies that P,NP. However, as first
observed by Beaver (1996), a batched execution of OT only needs a small
number of public key operations. Beaver’s construction was non-black-box in
the sense that a PRF needed to be represented as a circuit and evaluated as
MPC. As a consequence, Beaver’s result was mainly of theoretical interest.

3.7. Oblivious Transfer 55

Parameters:

1. Two parties: Sender S and Receiver R. S has input secrets x1, x2 ∈
{0, 1}n, and R has a selection bit b ∈ {0, 1}.

Protocol:

1. R generates a public-private key pair sk, pk, and samples a random key,
pk ′, from the public key space. If b = 0, R sends a pair (pk, pk ′) to S.
Otherwise (if b = 1), R sends a pair (pk ′, pk) to S.

2. S receives (pk0, pk1) and sends back to R two encryptions e0 =

Encpk0(x0), e1 = Encpk1(x1).

3. R receives e0, e1 and decrypts the ciphertext eb using sk. R is unable
to decrypt the second ciphertext as it does not have the corresponding
secret key.

Figure 3.6: Public key-based semi-honest OT.

Ishai et al. (2003) changed the state of affairs dramatically by proposing an
extremely efficient batched OT which only required κ of public key operations
for the entire batch and two or three hashes per OT.

3.7.1 Public Key-Based OT

We start with the basic public key-based OT in the semi-honest model. The
construction, presented in Figure 3.6, is very simple indeed.

The security of the construction assumes the existence of public-key
encryption with the ability to sample a random public key without obtaining
the corresponding secret key. The scheme is secure in the semi-honest model.
The Sender S only sees the two public keys sent by R, so cannot predict with
probability better than 1

2 which key was generated without the knowledge of
the secret key. Hence, the view of S can be simulated simply by sending two
randomly-chosen public keys.

The Receiver R sees two encryptions and has a secret key to decrypt only
one of them. The view of R is also easily simulated, given R’s input and

56 Fundamental MPC Protocols

output. SimS will generate the public-private key pair and a random public
key, and set the simulated received ciphertexts to be 1) the encryption of the
received secret under the generated keypair and 2) the encryption of zero under
the randomly chosen key. The simulation goes through since the difference
with the real execution is only in the second encryption, and distinguisher
will not be a tell apart the encryption of zero from another value due to the
encryption security guarantees. Note that this semi-honest protocol provides
no security against a malicious receiver—the Receiver R can simply generate
two public-private key pairs, (sk0, pk0) and (sk1, pk1) and send (pk0, pk1) to
S, and decrypt both received ciphertexts to learn both x1 and x2.

3.7.2 Public Key Operations in OT

The simple protocol in Figure 3.6 requires one public key operation for both the
sender and receiver for each selection bit. As used in a Boolean circuit-based
MPC protocol such as Yao’s GC, it is necessary to perform an OT for each
input bit of the party executing the circuit. For protocols like GMW, evaluating
each AND gate requires an OT. Hence, several works have focused on reducing
the number of public key operations to perform a large number of OTs.

Beaver’s non-black-box construction. Beaver (1996) proposed bootstrap-
ping Yao’s GC protocol to generate a polynomial number of OTs from a small
number of public key operations. As discussed in Section 3.1, the GC protocol
for computing a circuit C requires m OTs, where m is the number of input
bits provided by P2. Following the OT notation, we call P1 (the generator in
GC) the sender S, and P2 (the evaluator in GC) the receiver R. Let m be a
desired number of OTs that will now be performed as a batch. S’s input will be
m pairs of secrets (x0

1, x1
1), ..., (x

0
m, x1

m), and R’s input will be m-bit selection
string b = (b1, ..., bm).

We now construct a circuit C that implements a function F which takes
only a small number of input bits from R, but outputs the result of polynomial
number of OTs to R. The input of R to F will be a randomly chosen κ-bit
string r . Let G be a pseudo-random generator expanding κ bits into m bits. R
will send to S its input string masked with the pseudo-random string, b ⊕G(r).
Then, S’s input to F will be m pairs of secrets (x0

1, x1
1), . . . , (x

0
m, x1

m) as well as
the m-bit string b⊕G(r). Given r , the function F computes the m-bit expansion

3.7. Oblivious Transfer 57

G(r) and unmasks the input b ⊕ G(r), obtaining the selection string b. Then
F simply outputs to R the corresponding secrets xbi . Only κ input bits are
provided by R, the circuit evaluator, so only a constant number of κ OTs are
needed to perform m OTs.

Reducing the number of public key operations. The construction ofBeaver
(1996) shows a simple way to reduce the number of asymmetric operations
required to perform m OTs to a fixed security parameter, but is not efficient in
practice because of the need to execute a large GC. Recall, our goal is to use a
small number k of base-OTs, plus only symmetric-key operations, to achieve
m � k effective OTs. Here, k is chosen depending on the computational
security parameter κ; in the following we show how to choose k. Below we
describe the OT extension by Ishai et al. (2003) that achieves m 1-out-of-2 OT
of random strings, in the presence of semi-honest adversaries.

We follow the notation ofKolesnikov andKumaresan (2013), as it explicates
the coding-theoretic framework for OT extension. Suppose the receiver R has
choice bits r ∈ {0, 1}m. R chooses two m × k matrices (m rows, k columns), T
and U. Let t j, u j ∈ {0, 1}k denote the j-th row of T and U, respectively. The
matrices are chosen at random, so that:

t j ⊕ u j = rj · 1k
def
=

{
1k if rj = 1
0k if rj = 0

The sender S chooses a random string s ∈ {0, 1}k . The parties engage in
k instances of 1-out-of-2 string-OT, with their roles reversed, to transfer to
sender S the columns of either T or U, depending on the sender’s bit si in
the string s it chose. In the i-th OT, R provides inputs t i and ui, where these
refer to the i-th column of T and U, respectively. S uses si as its choice bit
and receives output qi ∈ {t i, ui}. Note that these are OTs of strings of length
m � k — the length of OT messages is easily extended, e.g., by encrypting
and sending the two m-bit long strings, and using OT on short strings to send
the right decryption key.

Now let Q denote the matrix obtained by the sender, whose columns are
qi. Let q j denote the jth row. The key observation is that

q j = t j ⊕ [rj · s] =
{
t j if rj = 0
t j ⊕ s if rj = 1

(3.2)

58 Fundamental MPC Protocols

Let H be a Random Oracle (RO)5. Then S can compute two random
strings H(q j) and H(q j ⊕ s), of which R can compute only one, via H(t j),
of R’s choice. Indeed, following Equation 3.2, q j equals either t j or t j ⊕ s,
depending on R’s choice bit rj . It is immediate then that t j equals either q j or
q j ⊕ s, depending on R’s choice bit rj . Note that R has no information about s,
so intuitively it can learn only one of the two random strings H(q j),H(q j ⊕ s).
Hence, each of the m rows of the matrix can be used to produce a single
1-out-of-2 OT of random strings.

To extend this to the more usual 1-out-of-2 OT of two given secrets s0, s1,
we add the following step to the above. S now additionally encrypts the two OT
secrets with the two keys H(q j) and H(q j ⊕ s) and sending the two encryptions
(e.g. H(q j) ⊕ s0 and H(q j ⊕ s) ⊕ s1) to R. As R can obtain exactly one of
H(q j) and H(q j ⊕ s), he can obtain only the corresponding secret si.

Coding interpretation and cheaper 1-out-of-2` OT. In IKNP, the receiver
prepares secret shares of T and U such that each row of T ⊕ U is either all
zeros or all ones. Kolesnikov and Kumaresan (2013) interpret this aspect of
IKNP as a repetition code and suggest using other codes instead.

Consider how we might use the IKNP OT extension protocol to realize
1-out-of-2` OT. Instead of a choice bit rj for the receiver, rj will now be an `-bit
string. Let C be a linear error correcting code of dimension ` and codeword
length k. The receiver will prepare matrices T and U so that t j ⊕ u j = C(rj).

Now, generalizing Equation 3.2 the sender S receives

q j = t j ⊕ [C(rj) · s] (3.3)

where “·” now denotes bitwise-AND of two strings of length k. (Note that
when C is a repetition code, this is exactly Equation 3.2.)

For each value r ′ ∈ {0, 1}` , the sender associates the secret value H(q j ⊕
[C(r ′) · s]), which it can compute for all r ′ ∈ {0, 1}` . At the same time, the
receiver can compute one of these values, H(t j). Rearranging Equation 3.3,
we have:

H(t j) = H(q j ⊕ [C(rj) · s])

5As pointed out by Ishai et al. (2003), it is sufficient to assume that H is a correlation-robust
hash function, a weaker assumption than RO. A special assumption is required because the
same s is used for every resulting OT instance.

3.8. Custom Protocols 59

Hence, the value that the receiver can learn is the secret value that the sender
associates with the receiver’s choice string r ′ = rj .

At this point, OT of random strings is completed. For OT of chosen strings,
the sender will use each H(qi ⊕ [C(r) · s]) as a key to encrypt the r-th OT
message. The receiver will be able to decrypt only one of these encryptions,
namely one corresponding to its choice string rj .

To argue that the receiver learns only one string, suppose the receiver has
choice bits rj but tries to learn also the secret H(q j ⊕ [C(r̃) · s]) corresponding
to a different choice r̃ . We observe:

q j ⊕ [C(r̃) · s] = t j ⊕ [C(rj) · s] ⊕ [C(r̃) · s]
= t j ⊕ [(C(rj) ⊕ C(r̃)) · s]

Importantly, everything in this expression is known to the receiver except
for s. Now suppose the minimum distance of C is κ (the security parameter).
Then C(rj) ⊕ C(r̃) has Hamming weight at least κ. Intuitively, the adversary
would have to guess at least κ bits of the secret s in order to violate security.
The protocol is secure in the RO model, and can also be proven under the
weaker assumption of correlation robustness, following Ishai et al. (2003) and
Kolesnikov and Kumaresan (2013).

Finally, we remark that the width k of the OT extension matrix is equal to
the length of codewords in C. The parameter k determines the number of base
OTs and the overall cost of the protocol.

The IKNP protocol sets the number of OT matrix columns to be k = κ. To
achieve the same concrete security as IKNPOT, the KK13 protocol (Kolesnikov
and Kumaresan, 2013) requires setting k = 2κ, to account for the larger space
required by the more efficient underlying code C.

3.8 Custom Protocols

All of the secure computation protocols discussed so far in this chapter are
generic circuit-based protocols. Circuit-based protocols suffer from linear
bandwidth cost in the size of the circuit, which can be prohibitive for large
computations. There are significant overheads with circuit-based computation
on large data structures, compared to, say, a RAM (Random Access Machine)
representation. In Chapter 5 we discuss approaches for incorporating sublinear
data structures into generic circuit-based protocols.

60 Fundamental MPC Protocols

Another approach is to design a customized protocol for a particular prob-
lem. This has some significant disadvantages over using a generic protocol. For
one, it requires designing and proving the security of a custom protocol. It also
may not integrate with generic protocols, so even if there is an efficient custom
protocol for computing a particular function, privacy-preserving applications
often require additional pre-processing or post-processing around that function
to be useful, so it may not be possible to use a custom protocol without also
developing methods for connecting it with a generic protocol. Finally, although
hardening techniques are known for generic protocols (Chapter 6), it may not
be possible to (efficiently) harden a customized protocol to work in a malicious
security setting.

Nevertheless, several specialized problems do benefit from tailored so-
lutions and the performance gains possible with custom protocols may be
substantial. In this work we briefly review one such practically important
problem: private set intersection.

3.8.1 Private Set Intersection (PSI)

The goal of private set intersection (PSI) is to enable a group of parties to
jointly compute the intersection of their input sets, without revealing any other
information about those sets (other than upper bounds on their sizes). Although
protocols for PSI have been built upon generic MPC (Huang et al., 2012a),
more efficient custom protocols can be achieved by taking advantage of the
structure of the problem.

We will present current state-of-the art two-party PSI (Kolesnikov et al.,
2016). It is built on the protocol of Pinkas et al. (2015), which heavily uses
Oblivious PRF (OPRF) as a subroutine. OPRF is an MPC protocol which
allows two players to evaluate a PRF F, where one of the players holds the PRF
key k, and the other player holds the PRF input x, and the second player gets
Fk(x). We first describe how to obtain PSI from OPRF, and then we briefly
discuss the OPRF construction. The improvement of Kolesnikov et al. (2016)
is due to developing a faster OPRF.

PSI from OPRF. We now describe the Pinkas-Schneider-Segev-Zohner
(PSSZ) construction (Pinkas et al., 2015) building PSI from an OPRF. For
concreteness, we describe the parameters used in PSSZ when the parties have

3.8. Custom Protocols 61

roughly the same number n of items.
The protocol relies on Cuckoo hashing (Pagh and Rodler, 2004) with 3

hash functions, which we briefly review now. To assign n items into b bins
using Cuckoo hashing, first choose random functions h1, h2, h3 : {0, 1}∗ → [b]
and initialize empty bins B[1, . . . , b]. To hash an item x, first check to see
whether any of the bins B[h1(x)], B[h2(x)], B[h3(x)] are empty. If so, then
place x in one of the empty bins and terminate. Otherwise, choose a random
i ∈ {1, 2, 3}, evict the item currently in B[hi(x)] and replace it with x, and
then recursively try to insert the evicted item. If this process does not terminate
after a certain number of iterations, then the final evicted element is placed in
a special bin called the stash.

PSSZ uses Cuckoo hashing to implement PSI. First, the parties choose 3
random hash functions h1, h2, h3 suitable for 3-way Cuckoo hashing. Suppose
P1 has input set X and P2 has input set Y , where |X | = |Y | = n. P2 maps its
items into 1.2n bins using Cuckoo hashing and a stash of size s. At this point,
P2 has at most one item per bin and at most s items in its stash. P2 pads its
input with dummy items so that each bin contains exactly one item and the
stash contains exactly s items.

The parties then run 1.2n + s instances of an OPRF, where P2 plays the
role of receiver and uses each of its 1.2n + s items as input to the OPRF. Let
F(ki, ·) denote the PRF evaluated in the i-th OPRF instance. If P2 has mapped
item y to bin i via Cuckoo hashing, then P2 learns F(ki, y); if P2 has mapped
y to position j in the stash, then P2 learns F(k1.2n+j, y).

On the other hand, P1 can compute F(ki, ·) for any i. So, P1 computes sets
of candidate PRF outputs:

H = {F(khi (x), x) | x ∈ X and i ∈ {1, 2, 3}}
S = {F(k1.2n+j, x) | x ∈ X and j ∈ {1, . . . , s}}

P1 randomly permutes elements of H and elements of S and sends them to P2,
who can identify the intersection of X and Y as follows. If P2 has an item y

mapped to the stash, it checks whether the associated OPRF output is present in
S. If P2 has an item y mapped to a hashing bin, it checks whether its associated
OPRF output is in H.

Intuitively, the protocol is secure against a semi-honest P2 by the PRF
property. For an item x ∈ X \ Y , the corresponding PRF outputs F(ki, y) are

62 Fundamental MPC Protocols

pseudorandom. Similarly, if the PRF outputs are pseudorandom even under
related keys, then it is safe for the OPRF protocol to instantiate the PRF
instances with related keys.

The protocol is correct as long as the PRF does not introduce any further
collisions (i.e., F(ki, x) = F(ki′, x ′) for x , x ′). We must carefully set the
parameters required to prevent such collisions.

More efficient OPRF from 1-out-of-∞ OT. Kolesnikov et al. (2016) devel-
oped an efficient OPRF construction for the PSI protocol, by pushing on the
coding idea from Section 3.7.2. The main technical observation is pointing out
that the code C need not have many of the properties of error-correcting codes.
The resulting pseudorandom codes enable an 1-out-of-∞ OT, which can be
used to produce an efficient PSI.

In particular,

1. it makes no use of decoding, thus the code does not need to be efficiently
decodable, and

2. it requires only that for all possibilities r, r ′, the value C(r) ⊕ C(r ′) has
Hamming weight at least equal to the computational security parameter
κ. In fact, it is sufficient even if the Hamming distance guarantee is only
probabilistic — i.e., it holds with overwhelming probability over choice
of C (we discuss subtleties below).

For ease of exposition, imagine letting C be a random oracle with suitably
long output. Intuitively, when C is sufficiently long, it should be hard to
find a near-collision. That is, it should be hard to find values r and r ′ such
that C(r) ⊕ C(r ′) has low (less than a computational security parameter κ)
Hamming weight. A random function with output length k = 4κ suffices to
make near-collisions negligible (Kolesnikov et al., 2016).

We refer to such a function C (or family of functions, in our standard-
model instantiation) as a pseudorandom code (PRC), since its coding-theoretic
properties — namely, minimum distance — hold in a cryptographic sense.

By relaxing the requirement on C from an error-correcting code to a
pseudorandom code, we remove the a-priori bound on the size of the receiver’s
choice string! In essence, the receiver can use any string as its choice string;
the sender can associate a secret value H(q j ⊕ [C(r ′) · s]) for any string r ′. As

3.9. Further Reading 63

discussed above, the receiver is only able to compute H(t j) = H(q j ⊕[C(r) · s])
— the secret corresponding to its choice string r . The property of the PRC is
that, with overwhelming probability, all other values of q j ⊕ [C(r̃) · s] (that a
polytime player may ever ask) differ from t j in a way that would require the
receiver to guess at least κ bits of s.

Indeed, we can view the functionality achieved by the above 1-out-of-∞
OT as a kind of OPRF. Intuitively, r 7→ H(q ⊕ [C(r) · s]) is a function that
the sender can evaluate on any input, whose outputs are pseudorandom, and
which the receiver can evaluate only on its chosen input r .

The main subtleties in viewing 1-out-of-∞ OT as OPRF are:

1. the fact that the receiver learns slightly more than the output of this
“PRF” — in particular, the receiver learns t = q ⊕ [C(r) · s] rather than
H(t); and,

2. the fact that the protocol realizes many instances of this “PRF” but with
related keys — s and C are shared among all instances.

Kolesnikov et al. (2016) show that this construction can be securely used in
place of the OPRF in the PSSZ protocol, and can scale to support private
intersections of sets (of any size element) with n = 220 over a wide area
network in under 7 seconds.

Set intersection of multiple sets can be computed iteratively by computing
pairwise intersections. However, extending the above 2PC PSI protocol to the
multi-party setting is not immediate. Several obstacles need to be overcome,
such as the fact that in 2PC computation one player learns the set intersection of
the two input sets. In the multi-party setting this information must be protected.
Efficient extension of the above PSI protocol to the multi-party setting was
proposed by Kolesnikov et al. (2017a).

3.9 Further Reading

In this book, we aim to provide an easy to understand and exciting introduction
to MPC, so omit a lot of formalization and proofs. Yao’s GC, despite its
simplicity, has several technical proof subtleties, which are first noticed and
written out in the first formal account of Yao’s GC (Lindell and Pinkas, 2009).
The GMW protocol was introduced by Goldreich et al. (1987), but Goldreich

64 Fundamental MPC Protocols

(2004) provides a cleaner and more detailed presentation. The BGW and
CCD protocols were developed concurrently by Ben-Or et al. (1988) and
Chaum et al. (1988). Beaver et al. (1990) considered constant-round multiparty
protocols. A more detailed protocol presentation and discussion can be found
in Phillip Rogaway’s Ph.D. thesis (Rogaway, 1991).

Recently, a visual cryptography scheme for secure computation without
computers was designed based on the GESS scheme (D’Arco and De Prisco,
2014; D’Arco and De Prisco, 2016). The OT extension of Ishai et al. (2003)
is indeed one of the most important advances in MPC, and there are several
extensions. Kolesnikov and Kumaresan (2013) and Kolesnikov et al. (2016)
propose random 1-out-of-n OT and 1-out-of-∞ OT at a cost similar to that of
1-out-of-2 OT. The above schemes are in the semi-honest model; maliciously-
secure OT extensions were proposed Asharov et al. (2015b) and Keller et al.
(2015) (the latter is usually seen as simpler and more efficient of the two).

Custom PSI protocols have been explored in many different settings
with different computation vs. communication costs and a variety of trust
assumptions. Hazay and Lindell (2008) presented a simple and efficient private
set intersection protocol that assumes one party would perform computations
using a trusted smartcard. Kamara et al. (2014) present a server-aided private
set intersection protocol, which, in the case of the semi-honest server, computes
the private set intersection of billion-element sets in about 580 seconds while
sending about 12.4 GB of data. This is an example of asymmetric trust, which
we discuss further in Section 7.2.

There has been much research on custom protocols beyond PSI, but it is
surprisingly rare to find custom protocols that substantially outperform fast
generic MPC implementations of the same problem.

4
Implementation Techniques

Although secure computation protocols (as described in Chapter 3) were known
since the 1980s, the first full implementation of a generic secure computation
system was Fairplay (Malkhi et al., 2004). Fairplay compiles a high-level
description of a function into a circuit, described using a custom-designed
Secure Hardware Description Language (SHDL). This circuit could then be
executed as a protocol by a generator program and an evaluator program
running over a network.

As a rough indication of the costs of MPC with Fairplay, the largest
benchmark reported for Fairplay was finding the median of two sorted input
arrays containing ten 16-bit numbers from each party. This required executing
4383 gates, and took over 7 seconds on a local area network (the time was
then dominated by the oblivious transfer, not the garbled circuit execution).
Modern MPC frameworks can execute millions of gates per second, and scale
to circuits computing complex functions on large inputs, with hundreds of
billions of gates.

Perhaps a factor of ten of the improvement can be attributed to general
improvements in computing and network bandwidth (the Fairplay results are
on a LAN with 618 Mbps, compared to 4 Gbps routinely available today), but
the rest of the 3–4 orders of magnitude improvements are due primarily to the

65

66 Implementation Techniques

advances in implementation techniques described in this chapter. These include
optimizations that reduce the bandwidth and computational costs of executing
a GC protocol (Section 4.1), improved circuit generation (Section 4.2), and
protocol-level optimizations (Section 4.3). We focus on improvements to Yao’s
GC protocol, as the most popular generic MPC protocol, although some of
the improvements discussed apply to other protocols as well. Section 4.4
briefly surveys tools and languages that have been developed for implementing
privacy-preserving applications using MPC.

4.1 Less Expensive Garbling

The main costs of executing a garbled circuits protocol are the bandwidth
required to transmit the garbled gates and the computation required to generate
and evaluate the garbled tables. In a typical setting (LAN or WAN and
moderate computing resources such as smartphone or a laptop), bandwidth is
the main cost of executing GC protocols. There have been many improvements
to the traditional garbling method introduced in Section 3.1.2; we survey
the most significant ones next. Table 4.1 summarizes the impact of garbing
improvements on the bandwidth and computation required to generate and
evaluate a garbled gate. We described point-and-permute in Section 3.1.1; the
other techniques are described in the next subsections.

size calls to H

Technique XOR AND XOR AND

classical 4 4 4 4
point-and-permute (1990) (§3.1.1) 4 4 4, 1 4, 1
row reduction (GRR3) (1999) (§4.1.1) 3 3 4, 1 4, 1
FreeXOR + GRR3 (2008) (§4.1.2) 0 3 0 4, 1
half gates (2015) (§4.1.3) 0 2 0 4, 2

Table 4.1: Garbling techniques (based on Zahur et al. (2015)). Size is number of “ciphertexts”
(multiples of κ bits) transmitted per gate. Calls to H is the number of evaluations of H needed
to evaluate each gate. When the number is different for the generator and evaluator, the numbers
shown are the generator calls, evaluator calls.

4.1. Less Expensive Garbling 67

4.1.1 Garbled Row Reduction

Naor et al. (1999) introduced garbled row reduction (GRR) as a way to reduce
the number of ciphertexts transmitted per gate. The key insight is that it is
not necessary for each ciphertext to be an (unpredictable) encryption of a
wire label. Indeed, one of the entries in each garbled table can be fixed to a
predetermined value (say 0κ), and hence need not be transmitted at all. For
example, consider the garbled table below, where a and b are the input wires,
and c is the output:

H(a1 ‖ b0) ⊕ c0

H(a0 ‖ b0) ⊕ c0

H(a1 ‖ b1) ⊕ c1

H(a0 ‖ b1) ⊕ c0

Since c0 and c1 are just arbitrary wire labels, we can select c0 = H(a1 ‖ b0).
Thus, one of the four ciphertexts in each gate (say, the first one when it is
sorted according point-and-permute order) will always be the all-zeroes string
and does not need to be sent. We call this method GRR3 since only three
ciphertexts need to be transmitted for each gate.

Pinkas et al. (2009) describe a way to further reduce each gate to two
ciphertexts, applying a polynomial interpolation at each gate. Because this is
not compatible with the FreeXOR technique described next, however, it was
rarely used in practice. The later half-gates technique (Section 4.1.3) achieves
two-ciphertext AND gates and is compatible with FreeXOR, so supersedes the
interpolation technique of Pinkas et al. (2009).

4.1.2 FreeXOR

One of the results of Kolesnikov (2005) was the observation that the GESS
sharing for XOR gates can be done without any growth of the share sizes
(Section 3.6). Kolesnikov (2005) found a lower bound for the minimum share
sizes, explaining the necessity of the exponential growth for independent
secrets. This bound, however, did not apply to XOR gates (or, more generally,
to “even” gates whose truth table had two zeros and two ones).

As introduced in Section 3.6, XOR sharing for GESS can simply be done
as follows. Let s0, s1 ∈ DS be the output wire secrets. Choose R ∈R DS and

68 Implementation Techniques

set the shares sh10 = R, sh11 = s0 ⊕ s1 ⊕ R, sh20 = s0 ⊕ R, sh21 = s1 ⊕ R. The
share reconstruction procedure on input sh1i, sh2j , outputs sh1i ⊕ sh2j . It is
easy to verify that this allows the evaluator to reconstruct the correct gate
output secret. Indeed, e.g., sh11 ⊕ sh21 = (s0 ⊕ s1 ⊕ R) ⊕ (s1 ⊕ R) = s0.

Denoting s0 ⊕ s1 = ∆, we observe that this offset ∆ is preserved for the
labels of each wire: sh10 ⊕ sh11 = sh20 ⊕ sh21 = s0 ⊕ s1 = ∆.

Because the shares on all of the gate’s wires have the same offset, the
above GESS XOR gate construction cannot be directly plugged into Yao’s
GC, since standard Yao’s GC requires wires to be independently random. This
breaks both correctness and security of GC. Indeed, correctness is broken
because GESS XOR will not produce the pre-generated output wire secrets.
Standard GC security proofs fail since GESS XOR creates correlations across
wire labels, which are encryption keys. Even more problematic with respect to
security is the fact that keys and encrypted messages are related to each other,
creating circular dependencies.

FreeXOR: Integrating GESS XOR into GC. FreeXOR is a GC technique
introduced by Kolesnikov and Schneider (2008b). Their work is motivated
by the fact that in GESS an XOR gate costs nothing (no garbled table needed,
and share secrets don’t grow), while traditional Yao’s GC pays full price of
generating and evaluating a garbled table for XOR gates. The GC FreeXOR
construction enables the use of GESS XOR construction by adjusting GC
secrets generation to repair the correctness broken by the naïve introduction of
GESS XOR into GC, and observing that a strengthening of the assumptions
on the encryption primitives used in the construction of GC garbled tables is
sufficient for security of the new scheme.

FreeXOR integrates GESS XOR into GC by requiring that all the circuit’s
wires labels are generated with the same offset ∆. That is, we require that for
each wire wi of GC Ĉ and its labels w0

i ,w
1
i , it holds that w

0
i ⊕ w1

i = ∆, for
a randomly chosen ∆ ∈R {0, 1}κ . Introducing this label correlation enables
GESS XOR to correctly reconstruct output labels.

To address the security guarantee, FreeXOR uses Random Oracle (RO)
for encryption of gates’ output labels, instead of the weaker (PRG-based)
encryption schemes allowed by Yao GC. This is necessary since inputs to
different instances of H are correlated by ∆, and furthermore different values

4.1. Less Expensive Garbling 69

masked by H’s output are also correlated by ∆. The standard security definition
of a PRG does not guarantee that the outputs of H are pseudorandom in this case,
but a random oracle does. Kolesnikov and Schneider mention that a variant of
correlation robustness, a notion weaker than RO, is sufficient (Kolesnikov and
Schneider, 2008b). In an important theoretical clarification of the FreeXOR
required assumptions, Choi et al. (2012b) show that the standard notion of
correlation robustness is indeed not sufficient, and pin down the specific
variants of correlation robustness needed to prove the security of FreeXOR.

The full garbling protocol for FreeXOR is given in Figure 4.1. The FreeXOR
GCprotocol proceeds identically to the standardYaoGCprotocols of Figure 3.2,
except that in Step 4,P2 processesXOR gates without needing any ciphertexts or
encryption: for an XOR-gate Gi with garbled input labels wa = (ka, pa),wb =

(kb, pb), the output label is directly computed as (ka ⊕ kb, pa ⊕ pb).
Kolesnikov et al. (2014) proposed a generalization of FreeXOR called

fleXOR. In fleXOR, an XOR gate can be garbled using 0, 1, or 2 ciphertexts,
depending on structural and combinatorial properties of the circuit. FleXOR
can be made compatible with GRR2 applied to AND gates, and thus supports
two-ciphertext AND gates. The half gates technique described in the next
section, however, avoids the complexity of fleXOR, and reduces the cost of
AND gates to two ciphertexts with full compatibility with FreeXOR.

4.1.3 Half Gates

Zahur et al. (2015) introduced an efficient garbling technique that requires only
two ciphertexts per AND gate and fully supports FreeXOR. The key idea is to
represent an AND gate as XOR of two half gates, which are AND gates where
one of the inputs is known to one of the parties. Since a half gate requires
a garbled table with two entries, it can be transmitted using the garbled row
reduction (GRR3) technique with a single ciphertext. Implementing an AND
gate using half gates requires constructing a generator half gate (where the
generator knows one of the inputs) and an evaluator half gate (where the
evaluator knows one of the inputs). We describe each half gate construction
next, and then show how they can be combined to implement an AND gate.

Generator Half Gate. First, consider the case of an AND gate where the
input wires are a and b and the output wire is c. The generator half-AND gate

70 Implementation Techniques

Parameters:
Boolean Circuit C implementing function F , security parameter κ.
Let H : {0, 1}∗ 7→ {0, 1}κ+1 be a hash function modeled by a RO.
Protocol:

1. Randomly choose global key offset ∆ ∈R {0, 1}κ .

2. For each input wire wi of C, randomly choose its 0 label,

w0
i = (k0

i , p0
i) ∈R {0, 1}κ+1.

Set the other label w1
i = (k1

i , p1
i) = (k0

i ⊕ ∆, p0
i ⊕ 1).

3. For each gate Gi of C in topological order

(a) If Gi is an XOR-gate wc = XOR(wa,wb) with input labels
w0
a = (k0

a, p0
a),w0

b
= (k0

b
, p0

b
), w1

a = (k1
a, p1

a),w1
b
= (k1

b
, p1

b
):

i. Set garbled output value w0
c = (k0

a ⊕ k0
b
, p0

a ⊕ p0
b
)

ii. Set garbled output value w1
c = (k0

a ⊕ k0
b
⊕ ∆, p0

a ⊕ p0
b
⊕ 1).

(b) If Gi is a 2-input gate wc = gi(wa,wb) with garbled labels
w0
a = (k0

a, p0
a),w0

b
= (k0

b
, p0

b
), w1

a = (k1
a, p1

a),w1
b
= (k1

b
, p1

b
):

i. Randomly choose output label w0
c = (k0

c, p0
c) ∈R {0, 1}κ+1

ii. Set output label w1
c = (k1

c, p1
c) = (k0

c ⊕ ∆, p0
c ⊕ 1).

iii. CreateGi’s garbled table. For each of 22 possible combinations
of Gi’s input values va, vb ∈ {0, 1}, set

eva,vb = H(kva
a | |k

vb
b
| |i) ⊕ w

gi (va,vb)
c .

Sort entries e in the table by the input pointers, placing entry
eva,vb in position 〈pvaa , pvb

b
〉.

4. Compute the output tables, as in Figure 3.1.

Figure 4.1: FreeXOR Garbling

4.1. Less Expensive Garbling 71

computes vc = va ∧ vb, where va is somehow known to the circuit generator.
Then, when va is false, the generator knows vc is false regardless of vb; when va
is true, vc = vb. We use a0, b0, and c0 to denote the wire labels encoding false
for wires a, b, and c respectively. Using the FreeXOR design, the wire label
for b is either b0 or b1 = b0 ⊕ ∆. The generator produces the two ciphertexts:

H(b0) ⊕ c0

H(b1) ⊕ c0 ⊕ va · ∆

These are permuted according to the pointer bits of b0, according to the
point-and-permute optimization.

To evaluate the half gate and obtain va∧vb, the evaluator takes a hash of its
wire label for b (either b0 or b1) and decrypts the appropriate ciphertext. If the
evaluator has b0, it can compute H(b0) and obtain c0 (the correct semantic false
output) by xor-ing it with the first ciphertext. If the evaluator has b1 = b0 ⊕ ∆,
it computes H(b1) to obtain c0 ⊕ va · ∆. If va = 0, this is c0; if va = 1, this
is c1 = c0 ⊕ ∆. Intuitively, the evaluator will never know both b0 and b1,
hence the inactive ciphertext appears completely random. This idea was also
used implicitly by Kolesnikov and Schneider, 2008b, Fig. 2, in the context of
programming components of a universal circuit.

Crucially for performance, the two ciphertexts can be reduced to a single ci-
phertext by selecting c0 according to the garbled row-reduction (Section 4.1.1).

Evaluator Half Gate. For the evaluator half gate, vc = va ∧ vb, the evaluator
knows the value of va when the gate is evaluated, and the generator knows
neither input. Thus, the evaluator can behave differently depending on the
known plaintext value of wire a. The generator provides the two ciphertexts:

H(a0) ⊕ c0

H(a1) ⊕ c0 ⊕ b0

The ciphertexts are not permuted here—since the evaluator already knows va,
it is fine (and necessary) to arrange them deterministically in this order. When
va is false, the evaluator knows it has a0 and can compute H(a0) to obtain
output wire c0. When va is true, the evaluator knows it has a1 so can compute
H(a1) to obtain c0 ⊕ b0. It can then xor this with the wire label it has for b, to
obtain either c0 (false, when b = b0) or c1 = c0 ⊕ ∆ (true, when b1 = b0 ⊕ ∆),

72 Implementation Techniques

without learning the semantic value of b or c. As with the generator half gate,
using garbled row-reduction (Section 4.1.1) reduces the two ciphertexts to a
single ciphertext. In this case, the generator simply sets c0 = H(a0) (making
the first ciphertext all zeroes) and sends the second ciphertext.

Combining Half Gates. It remains to show how the two half gates can be
used to evaluate a gate vc = va ∧ vb, in a garbled circuit, where neither party
can know the semantic value of either input. The trick is for the generator to
generate a uniformly random bit r , and to transform the original AND gate into
two half gates involving r:

vc = (va ∧ r) ⊕ (va ∧ (r ⊕ vb))

This has the same value as va ∧ vb since it distributes to va ∧ (r ⊕ r ⊕ vb).
The first AND gate (va ∧ r) can be garbled with a generator half-gate. The
second AND gate (va ∧ (r ⊕ vb)) can be garbled with an evaluator half-gate, but
only if r ⊕ vb is leaked to the evaluator. Since r is uniformly random and not
known to the evaluator, this leaks no sensitive information to the evaluator. The
generator does not know vb, but can convey r ⊕ vb to the evaluator without any
overhead, as follows. The generator will choose r to be the point-and-permute
pointer bit of the false wire label on wire b, which is already chosen uniformly
randomly. Thus, the evaluator learns r ⊕ vb directly from the pointer bit on the
wire it holds for b without learning anything about vb.

Since the XOR gates do not require generating and sending garbled tables
by using FreeXOR, we can compute an AND gate with only two ciphertexts,
two invocations of H, and two “free” XOR operations. Zahur et al. (2015)
proved the security of the half-gates scheme for any H that satisfies correlation
robustness for naturally derived keys. In all settings, including low-latency
local area networks, both the time and energy cost of bandwidth far exceed
the cost of computing the encryptions (see the next section for how H is
computed in this and other garbling schemes), and hence the half-gates method
is preferred over any other known garbling scheme. Zahur et al. (2015) proved
that no garbling scheme in a certain natural class of “linear” schemes1 could

1See Zahur et al. (2015) for a precise formulation of this class. Roughly speaking, the
half-gates scheme is optimal among schemes that are allowed to call a random oracle and
perform fixed linear operations on wire labels / garbled gate information / oracle outputs, where
the choice of these operations depends only on standard point-and-permute (Section 3.1.1) bits.

4.1. Less Expensive Garbling 73

use fewer than two ciphertexts per gate. Hence, under these assumptions the
half-gates scheme is bandwidth-optimal for circuits composed of two-input
binary gates (see Section 4.5 for progress on alternatives).

4.1.4 Garbling Operation

Network bandwidth is the main cost for garbled circuits protocols in most
practical scenarios. However, computation cost of GC is also substantial, and
is dominated by calls to the encryption function implementing the random
oracle H in garbling gates, introduced in Section 3.1.2. Several techniques
have been developed to reduce that cost, in particular by taking advantage of
built-in cryptographic operations in modern processors.

Since 2010, Intel cores have included special-purpose AES-NI instructions
for implementing AES encryption, and most processors from other vendors
include similar instructions. Further, once an AES key is set up (which involves
AES round keys generation), the AES encryption is particularly fast. This
combination of incentives motivated Bellare et al. (2013) to develop fixed-key
AES garbling schemes, where H is implemented using fixed-key AES as a
cryptographic permutation.

Their design is based on a dual-key cipher (Bellare et al., 2012), where
two keys are both needed to decrypt a ciphertext. Bellare et al. (2012) show
how a secure dual-key cipher can be built using a single fixed-key AES
operation under the assumption that fixed-key AES is effectively a random
permutation. Since the permutation is invertible, it is necessary to combine the
permutation with the key using the Davies-Meyer construction (Winternitz,
1984): ρ(K) = π(K) ⊕ K . Bellare et al. (2013) explored the space of secure
garbling functions constructed from a fixed-key permutation, and found the
fastest garbling method using π(K | |T)[1 : k] ⊕ K ⊕ X where K ← 2A ⊕ 4B,
A and B are the wire keys, T is a tweak, and X is the output wire.

Gueron et al. (2015) pointed out that the assumption that fixed-key AES
behaves like a random permutation is non-standard and may be questionable in
practice (Biryukov et al., 2009; Knudsen and Rijmen, 2007). They developed
a fast garbling scheme based only on the more standard assumption that
AES is a pseudorandom function. In particular, they showed that most of
the performance benefits of fixed-key AES can be obtained just by carefully
pipelining the AES key schedule in the processor.

74 Implementation Techniques

Note also that the FreeXOR optimization also requires stronger than
standard assumptions (Choi et al., 2012b), and the half-gates method depends
on FreeXOR. Gueron et al. (2015) showed a garbling construction alternative
to FreeXOR that requires only standard assumptions, but requires a single
ciphertext for each XOR gate. Moreover, their construction is compatible with
a scheme for reducing the number of ciphertexts needed for AND gates to two
(without relying on FreeXOR, as is necessary for half gates). The resulting
scheme has higher cost than the half-gates scheme because of the need to
transmit one ciphertext for each XOR, but shows that it is possible to develop
efficient (within about a factor of two of the cost of half gates) garbling schemes
based only on standard assumptions.

4.2 Optimizing Circuits

Since the main cost of executing a circuit-based MPC protocol scales linearly
with the size of the circuit, any reduction in circuit size will have a direct
impact on the cost of the protocol. Many projects have sought ways to reduce
the sizes of circuits for MPC. Here, we discuss a few examples.

4.2.1 Manual Design

Several projects have manually designed circuits to minimize the costs of
secure computation (Kolesnikov and Schneider, 2008b; Kolesnikov et al.,
2009; Pinkas et al., 2009; Sadeghi et al., 2010; Huang et al., 2011b; Huang
et al., 2012a), often focusing on reducing the number of non-free gates when
FreeXOR is used. Manual circuit design can take advantage of opportunities
that are not found by automated tools, but because of the effort required
to manually design circuits, is only suitable for widely-used circuits. We
discuss one illustrative example next; similar approaches have been used to
design common building blocks optimized for secure computation such as
multiplexers and adders, as well as more complex functions like AES (Pinkas
et al., 2009; Huang et al., 2011b; Damgård et al., 2012a).

Oblivious permutation. Shuffling an array of data in an oblivious permuta-
tion is an important building block for many privacy-preserving algorithms,
including private set intersection (Huang et al., 2012a) and square-root ORAM

4.2. Optimizing Circuits 75

f

a
1

a
2

b
1

b
2

Figure 4.2: X switching block

(Section 5.4). A basic component of an oblivious permutation, as well as many
other algorithms, is a conditional swapper (also called an X switching block
by Kolesnikov and Schneider (2008b) and Kolesnikov and Schneider (2008a)),
which takes in two inputs, a1 and a2, and produces two outputs, b1 and b2.
Depending on the value of the swap bit p, either the outputs match the inputs
(b1 = a1 and b2 = a2) or the outputs are the inputs in swapped order (b1 = a2
and b2 = b1). The swap bit p is known to the circuit generator, but must not be
revealed to the evaluator. Kolesnikov and Schneider (2008b) provided a design
for a swapper that takes advantage of FreeXOR and requires only a two-row
garbled table (which can be reduced to a single ciphertext using garbled row
reduction from Section 4.1.1). The swapper is implemented as:

b1 = a1 ⊕ (p ∧ (a1 ⊕ a2))
b2 = a2 ⊕ (p ∧ (a1 ⊕ a2))

(4.1)

The swapper is illustrated in Figure 4.2. There the block f is set to 0
if no swapping is desired, and to 1 to implement swapping. The f block
is implemented as a conjunction of the input with the programming bit p,
so Figure 4.2 corresponds to Equation 4.1.

Since wire outputs can be reused, p ∧ (a1 ⊕ a2) only needs to be evaluated
once. Referring back to the half-gates garbling and the notation of Section 4.1.3,
when p is known to the generator, this conjunction is a generator half gate.
As noted above, applying GRR3 allows this to be implemented with a single

76 Implementation Techniques

ciphertext.2 With the above conditional swapper, a random oblivious permuta-
tion can be produced by the circuit generator by selecting a random permutation
and configuring the swappers in a Waksman network (Waksman, 1968) as
necessary to produce it (Huang et al., 2012a). Several permutation block
designs, including truncated permutation blocks, are presented by Kolesnikov
and Schneider (2008a).

Low-depth circuits: optimizing for GMW. For most of this chapter, we
focus on Yao’s GC, where a single round of communication is sufficient and
the cost of execution scales with the size of the circuit. While most of the
circuit-based optimizations apply to other protocols also, it is important to
consider variations in cost factors when designing circuits for other protocols.
In particular, in the GMW protocol (Section 3.2) each AND gate evaluation
requires an OT, and hence a round of communication. AND gates on the same
level can be batched and executed in the same round. Thus, unlike Yao’s GC
where the cost of execution is independent of its depth, for GMW protocol
executions the cost depends heavily on the depth of the circuit.

Choi et al. (2012a) built an efficient implementation of GMW by using
OT precomputation (Beaver, 1995) to reduce the on-line computation to a
simple XOR, and OT extension protocols (Section 3.7.2) to reduce the overall
cost of OT. A communication round (two messages) is still required during
evaluation for each level of AND gates, however, so circuit execution time
depends on the depth of the circuit. Schneider and Zohner (2013) provided
further optimizations to the OT protocols for use in GMW, and designed low-
depth circuits for several specific problems. Since GMW supports FreeXOR,
the effective depth of a circuit is the maximum number of AND gates on any
path. Schneider and Zohner (2013) were able to produce results on low-latency
networks with GMW that were competitive with Yao’s GC implementations
by designing low-depth circuits for addition, squaring, comparison, and
computing Hamming weight, and by using single-instruction multiple data
(SIMD) instructions to pack operations on multiple bits, following on the
approach used by Sharemind (Bogdanov et al., 2008a).

2Indeed, the idea for half-gates garbling (Section 4.1.3) came from this X switching block
design from Kolesnikov and Schneider (2008b).

4.2. Optimizing Circuits 77

4.2.2 Automated Tools

Boolean circuits go back to the earliest days of computing (Shannon, 1937).
Because they have core applications in computing (e.g., in hardware com-
ponents), there are a number of tools that have been developed to produce
efficient Boolean circuits. The output of some of these tools can be adapted to
circuit-based secure computation.

CBMC-GC. Holzer et al. (2012) used a model checking tool as the basis for a
tool that compiles C programs into Boolean circuits for use in a garbled circuits
protocol. CBMC (Clarke et al., 2004) is a bounded model checker designed to
verify properties of programs written in ANSI C. It works by first translating
an input program (with assertions that define the properties to check) into a
Boolean formula, and then using a SAT solver to test the satisfiability of that
formula. CBMC operates at the level of bits in the machine, so the Boolean
formula it generates is consistent with the program semantics at the bit level.
When used as a model checker, CBMC attempts to find a satisfying assignment
of the Boolean formula corresponding to the input program. If a satisfying
assignment is found, it corresponds to a program trace that violates an assertion
in the program. CBMC unrolls loops and inlines recursive function calls up
to the given model-checking bound, removing cycles from the program. For
many programs, CBMC can statically determine the maximum number of
loop iterations; when it cannot, programmers can use annotations to state this
explicitly. When used in bounded model checking, an assertion is inserted that
will be violated if the unrolling was insufficient. Variables are replaced by bit
vectors of the appropriate size, and the program is converted to single-static
assignment form so that fresh variables are introduced instead of assigning to
a given variable more than once.

Normally, CBMC would convert the program to a Boolean formula, but
internally it is represented as a circuit. Hence, CBMC can be used as a
component in a garbled circuits compiler that translates an input program in
C into a Boolean circuit. To build CBMC-GC, Holzer et al. (2012) modified
CBMC to output a Boolean circuit which can be then executed in circuit-based
secure computation framework (such as the one from Huang et al. (2011b),
which was used by CBMC-GC). Since CBMC was designed to optimize
circuits for producing Boolean formulas for SAT solvers, modifications were

78 Implementation Techniques

done to produce better circuits for garbled circuit execution. In particular, XOR
gates are preferred in GC execution due to the FreeXOR technique (whereas
the corresponding costs in model checking favor AND gates). To minimize the
number of non-free gates, Holzer et al. (2012) replaced the built-in circuits
CBMC would use for operations like addition and comparison, with designs
that minimize costs with free XOR gates.

TinyGarble. Another approach to generating circuits for MPC is to leverage
the decades of effort that have been invested in hardware circuit synthesis tools.
Hardware description language (HDL) synthesis tools transform a high-level
description of an algorithm, which could be written in a programming language
or common HDL language such as Verilog, into a Boolean circuit. A synthesis
tool optimizes a circuit to minimize its size and cost, and then outputs a netlist,
which is a straightforward description of a circuit as a list of logic gates with
connected inputs and outputs.

Conventional hardware synthesis tools, however, do not generate circuits
suitable for MPC protocols because they generate circuits that may have cycles
and they are designed to optimize for different costs that are encountered the
MPC execution (in particular, they assume the cost of gates based on hardware
implementations). With TinyGarble, Songhori et al. (2015) overcame these
problems in adapting circuit synthesis tools for generating circuits for MPC,
and Yao’s GC in particular.

The approach of TinyGarble is to use sequential logic in a garbled circuit.
In a sequential circuit, instead of just connecting gates in a combinational
way where each gate’s outputs depend only on its inputs and no cycles are
permitted, a circuit also can maintain state. In hardware, state would be stored
in a physical memory element (such as a flip-flop), and updated with each clock
cycle. To execute (generate and send) a garbled circuit, TinyGarble instead
unrolls a sequential circuit, so the stored state is an additional input to the
circuit, and new garbled gates are generated for each iteration. This means
the representation is compact, even for large circuit executions, which allows
performance improvement due to the ability to store the circuit in processor
cache and avoid expensive RAM accesses. This method trades off a slight
increase in the number of garbled gates to execute for a reduction in the size of
the circuit representation.

4.3. Protocol Execution 79

In addition, TinyGarble uses a custom circuit synthesis library to enable the
circuit synthesis tool to produce cost-efficient circuits for MPC. This includes
a library of custom-designed circuits for common operations like a multiplexer,
based on previous designs (Section 4.2.1). Another input to a circuit synthesis
tool is a technology library, that describes the logic units available on the target
platform and their costs and constraints, and use this to map a structural circuit
to a gate-level netlist. To generate circuits that take advantage of FreeXOR, the
custom library developed for TinyGarble sets the area of an XOR gate to 0, and
the area of other gates to a cost that reflects the number of ciphertexts required.
When the circuit synthesis tool is configured to minimize circuit area, this
produces circuits with an optimized number of non-XOR gates.

Songhori et al. (2015) report a 67% reduction in the number of non-XOR
gates in 1024-bit multiplication compared to automatically-generated circuits
for same function. For a more diverse function set (implementing a MIPS
processor), the circuit generation has modest performance improvement as
compared to prior work (the synthesizedMIPS CPU circuit reduces the number
of non-XOR gates by less than 15% compared to a straightforward assembly
of MIPS CPU from constituent blocks).

4.3 Protocol Execution

The main limit on early garbled circuit execution frameworks, starting with
Fairplay (Malkhi et al., 2004), is that they needed to generate and store the
entire garbled circuit. Early on, researchers focused on the performance for
smaller circuits and developed tools that naïvely generate and store the entire
garbled circuit. This requires a huge amount of memory for all but trivial
circuits, and limited the size of inputs and complexity of functions that could
be computed securely. In this section, we discuss various improvements to the
way MPC protocols are executed that have overcome these scaling issues and
eliminated much of the overhead of circuit execution.

Pipelined Execution. Huang et al. (2011b) introduced garbled circuit
pipelining, which eliminated the need for either party to ever store the entire
garbled circuit. Instead of generating the full garbled circuit and then sending it,
the circuit generation and evaluation phases are interleaved. Before the circuit
execution begins, both parties instantiate the circuit structure, which is small

80 Implementation Techniques

relative to the size of the full garbled circuit since it can reuse components and
is made of normal gate representations instead of non-reusable garbled gates.

To execute the protocol, the generator produces garbled gates in an order
that is determined by the topology of the circuit, and transmits the garbled
tables to the evaluator as they are produced. As the client receives them, it
associates each received garbled table with the corresponding gate of the circuit.
Since the order of generating and evaluating the circuit is fixed according
to the circuit (and must not depend on the parties’ private inputs), keeping
the two parties synchronized requires essentially no overhead. As it evaluates
the circuit, the evaluator maintains a set of live wire labels and evaluates the
received gates as soon as all their inputs are ready. This approach allows the
storage for each gate to be reused after it is evaluated, resulting in much smaller
memory footprint and greatly increased performance.

Compressing Circuits. Pipelining eliminates the need to store the entire
garbled circuit, but still requires the full structural circuit to be instantiated.
Sequential circuits, mentioned earlier in Section 4.2.2, are one way to overcome
this by enabling the same circuit structure to be reused but require a particular
approach to circuit synthesis and some additional overhead to maintain the
sequential circuit state. Another approach, initiated by Kreuter et al. (2013),
uses lazy generation from a circuit representation that supports bounded
loops. Structural circuits are compactly encoded using a Portable Circuit
Format (PCF), which is generated by a circuit compiler and interpreted as
the protocol executes. The input to the the circuit compiler is intermediate-
level stack machine bytecode output by the LCC front-end compiler (Fraser
and Hanson, 1995), enabling the system to generate MPC protocols from
different high-level programs. The circuit compiler takes in an intermediate-
level description of a program to execute as an MPC, and outputs a compressed
circuit representation. This representation is then used as the input to interpreters
that execute the generator and evaluator for a Yao’s GC protocol, although the
same representation could be used for other interpreters to executed different
circuit-based protocols.

The key insight enabling PCF’s scalability is to evaluate loops without
unrolling them by reusing the same circuit structure while having each party
locally maintain the loop index. Thus, new garbled tables can be computed

4.3. Protocol Execution 81

as necessary for each loop execution, but the size of the circuit, and local
memory needed, does not grow with the number of iterations. PCF represents
Boolean circuits in a bytecode language where each input is a single bit, and
the operations are simple Boolean gates. Additional operations are provided
for duplicating wire values, and for making function calls (with a return
stack) and indirect (only forward) jumps. Instructions that do not involve
executing Boolean operators do not require any protocol operations, so can be
implemented locally by each party. To support secure computation, garbled
wire values are represented by unknown values, which cannot be used as the
conditions for conditional branches. The PCF compiler implemented several
optimizations to reduce the cost of the circuits, and was able to scale to circuits
with billions of gates (e.g., over 42 billion gates, of which 15 billion were
non-free, to compute 1024-bit RSA).

Mixed Protocols. Although generic MPC protocols such as Yao’s GC and
GMW can execute any function, there are often much more efficient ways to
implement specific functions. For example, additively homomorphic encryption
schemes (including Paillier (1999) and Damgård and Jurik (2001)) can perform
large additions much more efficiently than can be done with Boolean circuits.

With homomorphic encryption, instead of jointly computing a function
using a general-purpose protocol, P1 encrypts its input and sends it to P2.
P2 then uses the encryption homomorphism to compute (under encryption)
a function on the encrypted input, and sends the encrypted result back to
P1. Unless the output of the homomorphic computation is the final MPC
result, its plaintext value cannot be revealed. Kolesnikov et al. (2010) and
Kolesnikov et al. (2013) describe a general mechanism for converting between
homomorphically-encrypted and garbled GC values. The party that evaluates
the homomorphic encryption, P2, generates a random mask r , which is added
to the output of the homomorphic encryption, Enc(x), before being sent to
P1 for decryption. Thus the value received by P1 is Enc(x + r), which P1 can
decrypt to obtain x + r . To enter x into the GC evaluation, P1 provides x + r
and P2 provides r as their inputs into the GC. The garbled circuit performs the
subtraction to cancel out the mask, producing a garbled representation of x.
Several works have developed customized protocols for particular tasks that
combine homomorphic encryption with generic MPC (Brickell et al., 2007;

82 Implementation Techniques

Huang et al., 2011c; Nikolaenko et al., 2013a; Nikolaenko et al., 2013b).
The TASTY compiler (Henecka et al., 2010) provides a language for

describing protocols involving both homomorphic encryption and garbled
circuits. It compiles a high-level description into a protocol combining gar-
bled circuit and homomorphic encryption evaluation. The ABY (Arithmetic,
Boolean, Yao) framework of Demmler et al. (2015) support Yao’s garbled
circuits and two forms of secret sharing: arithmetic sharings based on Beaver
multiplication triples (Section 3.4) and Boolean sharings based on GMW
(Section 3.2). It provides efficient methods for converting between the three
secure encodings, and for describing a function that can be executed using
a combination of the three protocols. Kerschbaum et al. (2014) developed
automated methods for selecting which protocol performs best for different
operations in a secure computation.

Outsourcing MPC. Although it is possible to run MPC protocols directly
on low-power devices, such as smartphones (Huang et al., 2011a), the high
cost of bandwidth and the limited energy available for mobile devices makes
it desirable to outsource the execution of an MPC protocol in a way that
minimizes the resource needed for the end user device without compromising
security. Several schemes have been proposed for off-loading most of the work
of GC execution to an untrusted server including Salus (Kamara et al., 2012)
and (Jakobsen et al., 2016).

We focus here on the scheme from Carter et al. (2016) (originally published
earlier (Carter et al., 2013)). This scheme targets the scenario where a mobile
phone user wants to outsource the execution of an MPC protocol to a cloud
service. The other party in the MPC is a server that has high bandwidth
and computing resources, so the primary goal of the design is to make the
bulk of the MPC execution be between the server and cloud service, rather
than between the server and mobile phone client. The cloud service may
be malicious, but it is assumed not to collude with any other party. It is a
requirement that no information about either the inputs or outputs of the secure
function evaluation are leaked to the cloud service. This security notion of a
non-colluding cloud is formalized by Kamara et al. (2012). The Carter et al.
(2016) protocol supports malicious security, building on several techniques,
some of which we discuss in Section 6.1. To obtain the inputs with lower

4.4. Programming Tools 83

resources from the client, the protocol uses an outsourced oblivious transfer
protocol. To provide privacy of the outputs, a blinding circuit is added to the
original circuit that masks the output with a random pad known only to the
client and server. By moving the bulk of the garbled circuit execution cost to
the cloud service, the costs for the mobile device can be dramatically reduced.

4.4 Programming Tools

Many programming tools have been developed for building privacy-preserving
applications using MPC. These tools vary by the input languages they support,
how they combine the input program into a circuit and how the output is
represented, as well as the protocols they support. Table 4.2 provides a high-
level summary of selected tools for building MPC applications. We don’t
attempt to provide a full survey of MPC programming tools here, but describe
one example of a secure computation programming framework next.

Obliv-C. The Obliv-C language is a strict extension of C that supports all
C features, along with new data types and control structures to support data-
oblivious programs that will be implemented using MPC protocols. Obliv-C is
designed to provide high-level programming abstractions while exposing the
essential data-oblivious nature of such computations. This allows programmers
to implement libraries for data-oblivious computation that include low-level
optimizations without needing to specify circuits.

In Obliv-C, a datatype declared with the obliv type modifier is oblivious to
the program execution. It is represented in encrypted form during the protocol
execution, so nothing in the program execution can depend on its semantic
value. The only way any values derived from secret data can be converted back
to a semantic value is by calling an explicit reveal function. When this function
is invoked by both parties on the same variable, the value is decrypted by the
executing protocol, and its actual value is now available to the program.

Control flow of a program cannot depend on oblivious data since its
semantic value is not available to the execution. Instead, Obliv-C provides
oblivious control structures. For example, consider the following statement
where x and y are obliv variables:

obliv if (x > y) x = y;

84 Implementation Techniques

Since the truth value of the x > y condition will not be known even at runtime,
there is no way for the execution to know if the assignment occurs. Instead,
every assignment statement inside an oblivious conditional context must use
“multiplexer” circuits that select based on the semantic value of the comparison
condition within the MPC whether to perform the update or have no effect.
Within the encrypted protocol, the correct semantics are implemented to ensure
semantic values are updated only on the branch that would actually be executed
based on the oblivious condition. The program executing the protocol (or an
analyst reviewing its execution) cannot determine which path was actually
executed since all of the values are encrypted within the MPC.

Updating a cleartext value z within an oblivious conditional branch would
not leak any information, but would provide unexpected results since the update
would occur regardless of whether or not the oblivious conditional is true.
Obliv-C’s type system protects programmers from mistakes where non-obliv
values are updated in conditional contexts. Note that the type checking is not
necessary for security since the security of the obliv values is enforced at
runtime by the MPC protocol. It only exists to help the programmers avoid
mistakes by providing compile time errors for non-sensical code.

To implement low-level libraries and optimizations, however, it is useful
for programmers to escape that type system. Obliv-C provides an unconditional
block construct that can be used within an oblivious context but contains
code that executes unconditionally. Figure 4.3 shows an example of how
an unconditional block (denoted with ∼obliv(var)) can be used to implement
oblivious data structures in Obliv-C. This is an excerpt of an implementation
of a simple resizable array implemented using a struct that contains oblivious
variables representing the content and actual size of the array, and an opaque
variable representing its maximum possible size. While the current length of
the array is unknown (since we might append() while inside an obliv if), we
can still use an unconditional block to track a conservative upper bound of the
length. We use this variable to allocate memory space for an extra element
when it might be needed.

This simple example illustrates how Obliv-C can be used to implement
low-level optimizations for complex oblivious data structures, without needing
to implement them at the level of circuits. Obliv-C has been used to implement
libraries for data-oblivious data structures supporting random access memory

4.5. Further Reading 85

typedef struct {
obliv int ∗arr;
obliv int sz;
int maxsz;

} Resizeable;

void writeArray(Resizeable ∗r, obliv int index, obliv int val) obliv;

// obliv function, may be called from inside oblivious conditional context
void append(Resizable ∗r, obliv int val) obliv {
∼obliv(_c) {

r→arr = reallocateMem(r→arr, r→maxsz + 1);
r→maxsz++;

}
writeArray(r, r→sz, val);
r→sz++;

}

Figure 4.3: Example use of an unconditional block (extracted from Zahur and Evans (2015)).

including Square-Root ORAM (Section 5.4) and Floram (Section 5.5), and to
implement some of the largest genericMPC applications to date including stable
matching at the scale needed for the national medical residency match (Doerner
et al., 2016), an encrypted email spam detector (Gupta et al., 2017), and a
commercial MPC spreadsheet (Calctopia, Inc., 2017).

4.5 Further Reading

Many methods for improving garbling have been proposed beyond the ones
covered in Section 4.1. As mentioned in Section 4.1.3, the half-gates scheme
is bandwidth optimal under certain assumptions. Researchers have explored
several ways to reduce bandwidth by relaxing those assumptions including
garbling schemes that are not strictly “linear” in the sense considered in the
optimality proof (Kempka et al., 2016), using high fan-in gates (Ball et al.,
2016) and larger lookup tables (Dessouky et al., 2017; Kennedy et al., 2017).
MPC protocols are inherently parallelizable, but additional circuit design effort
may be helpful for maximizing the benefits of parallel execution (Buescher
and Katzenbeisser, 2015). GPUs provide further opportunities for speeding up

86 Implementation Techniques

Tool / Input Language Output/Execution Protocols
ABY / Custom low-level
Demmler et al., 2015

Virtual machine
executes protocol

Arithmetic, Boolean
sharings; GC (§4.3)

EMP / C++ Library
Wang et al., 2017a

Compiled to exe-
cutable

Authenticated Gar-
bling (§6.7), others

Frigate / Custom (C-like)
Mood et al., 2016

Interprets compact
Boolean circuit

Yao’s GC, malicious-
secure with DUPLO

Obliv-C / C + extensions
Zahur and Evans, 2015

Source-to-source
(C)

Yao’s GC, Dual
Execution (§7.6)

PICCO / C + extensions
Zhang et al., 2013

Source-to-source
(C)

3+-party secret-
sharing

Table 4.2: Selected MPC Programming tools. In this table, we focus on tools that are
recently or actively developed, and that provide state-of-the-art performance. The
DUPLO extension is from (Kolesnikov et al., 2017b). All of the listed tools are avail-
able as open source code: ABY at https://github.com/encryptogroup/ABY; EMP at
https://github.com/emp-toolkit; Frigate at https://bitbucket.org/bmood/frigaterelease;
Obliv-C at https://oblivc.org; PICCO at https://github.com/PICCO-Team/picco.

MPC execution (Husted et al., 2013).
Many other MPC programming tools have been developed. Wysteria (Ras-

togi et al., 2014) provides a type system that supports programs that combine
local and secure computation. SCAPI (Bar-Ilan Center for Research in Applied
Cryptography and Cyber Security, 2014; Ejgenberg et al., 2012) provides
Java implementations of many secure computation protocols. We focused on
tools mostly building on garbled circuit protocols, but many tools implement
other protocols. For example, the SCALE-MAMBA system (Aly et al., 2018)
compiles programs written in a custom Python-like language (MAMBA) to
execute both the offline and online phases of secure computation protocols
built on BDOZ and SPDZ (Section 6.6.2). We focused on programming
tools in the dishonest majority setting, but numerous tools have been built
supporting other threat models. In particular, very efficient implementations
are possible with assuming three-party, honest-majority model, most notably
Sharemind (Bogdanov et al., 2008b) and Araki et al. (2017) (Section 7.1.2).

https://github.com/encryptogroup/ABY
https://github.com/emp-toolkit
https://bitbucket.org/bmood/frigaterelease
https://oblivc.org
https://github.com/PICCO-Team/picco

5
Oblivious Data Structures

Standard circuit-based execution is not well-suited to programs relying on
random access to memory. For example, executing a simple array access where
the index is a private variable (we use the < z > notation to indicate that the
variable z is private, with its semantic value protected by MPC),

a[<i>] = x

requires a circuit that scales linearly in the size of the array a. A natural circuit
consists of N multiplexers, as shown in Figure 5.1. This method, where every
element of a data structure is touched to perform an oblivious read or an update,
is known as linear scan. For practical computations on large data structures, it
is necessary to provide sublinear access operations. However, any access that
only touches a subset of the data potentially leaks information about protected
data in the computation.

In this chapter, we discuss several extensions to circuit-basedMPCdesigned
to enable efficient applications using large data structures. One strategy for
providing sublinear-performance data structures in oblivious computation is to
design data structures that take advantage of predictable access patterns. Indeed,
it is not necessary to touch the entire data structure if the parts that are accessed
do not depend on any private data (Section 5.1). A more general strategy,
however, requires providing support for arbitrary memory access with sublinear

87

88 Oblivious Data Structures

== 0

a[0] x

a'[0]

…

a[1] x

a'[1]

a[2] x

a'[2]

i

== 1

i

== 2

i

Figure 5.1: A single array access requiring N multiplexers.

a[0]

a'[0]

×2

a[1]

a'[1]

×2

a[N-1]

a'[N-1]

×2…

Figure 5.2: Oblivious array update with predictable access pattern.

cost. This cannot be achieved within a general-purpose MPC protocol, but can
be achieved by combining MPC with oblivious RAM (Sections 5.2–5.5).

5.1 Tailored Oblivious Data Structures

In some programs the access patterns are predictable and known in advance,
even though they may involve private data. As a simple example, consider this
loop that doubles all elements of an array of private data:

for (i = 0; i < N; i++) {
a[i] = 2 ∗ a[i]

}

Instead of requiring N linear scan array accesses for each iteration (withΘ(N2)
total cost), the loop could be unrolled to update each element directly, as shown
in Figure 5.2. Since the access pattern required by the algorithm is completely
predictable, there is no information leakage in just accessing each element
once to perform its update.

Most algorithms access data in a way that is not fully and as obviously
predictable as in the above example. Conversely, usually it is done in a way that

5.1. Tailored Oblivious Data Structures 89

is not fully data-dependent. That is, it might be a priori known (i.e., known
independently of the private inputs) that some access patterns are guaranteed
to never occur in the execution. If so, an MPC protocol that does not include
the accesses that are known to be impossible regardless of the private data may
still be secure. Next, we describe oblivious data structures designed to take
advantage of predictable array access patterns common in many algorithms.

Oblivious Stack and Queue. Instead of implementing a stack abstraction
using an array, an efficient oblivious stack takes advantage of the inherent
locality in stack operations—they always involve the top of the stack. Since
stack operations may occur in conditional contexts, though, the access pattern is
not fully predictable. Hence, an oblivious stack data structure needs to provide
conditional operations which take as an additional input a protected Boolean
variable that indicates whether the operation actually occurs. For example,
the <stack>.condPush(, <v>) operation pushes v on the stack when the
semantic value of b is true, but has no impact on the semantic state of the stack
when b is false.

A naïve implementation of condPush would be to use a series of multi-
plexers to select for each element of the resulting stack either the current
element, stack[i] when b is false, or the previous element, stack[i − 1] (or pushed
value v, for the top element) when b is true. As with a linear scan array, however,
this implementation would still require a circuit whose size scales with the
maximum current size of the stack for each stack operation.

A more efficient data structure uses a hierarchical design, dividing the
stack representation into a group of buffers where each has some slack space
so it is not necessary to touch the entire data structure for each operation. The
design in Zahur and Evans (2013), inspired by Pippenger and Fischer (1979),
divides the stack into buffers where the level-i buffer has 5 × 2i data slots.
The top of the stack is represented by level 0. For each level, the data slots
are managed in blocks/groups of 2i slots; thus, for level 1, each data is always
added in a block of two data items. For each block, a single bit is maintained
that tracks whether the block is currently empty. For each level, a 3-bit counter,
t, keeps track of the location of the next empty block available (0–5).

Figure 5.3 depicts an example of a conditional stack which starts off with
some data already inserted and two condPush operations are illustrated. The

90 Oblivious Data Structures

starting state in the figure depicts a state where none of the t values exceed
3, and hence there is guaranteed sufficient space for two conditional push
operations. A multiplexer is used to push the new value into the correct slot
based on the t0 value, similar to the naïve stack circuit design described above.
However, in this case, the cost is low since this is applied to a fixed 5-element
array. After two conditional push operations, however, with the starting t0 = 3,
the level 0 buffer could be full. Hence, it is necessary to perform a shift, which
either has no impact (if t0 ≤ 3), or pushes one block from level 0 into level 1
(as shown in Figure 5.3). After the shift, two more conditional push operations
can be performed. This hierarchical design can extend to support any size stack,
with shifts for level i generated for every 2i condPush operations. A similar
design can support conditional pop operations, where left shifts are required
for level i after every 2i condPop operations. The library implementing the
conditional stack keeps track of the number of stack operations to know the
minimum and maximum number of possible elements at each level, and inserts
the necessary shifts to prevent overflow and underflows.

For all circuit-based MPC protocols, the primary cost is the bandwidth
required to execute the circuit, which scales linearly in the number of gates.
The cost depends on the maximum possible number of elements at each point
in the execution. For a stack known to have at most N elements, k operations
access level i at most bk/2ic times since we need a right shift for level i after
every 2i conditional push operations (and similarly, need a left shift after 2i

conditional pop operations).
However, the operations at the deeper levels are more expensive since the

size of each block of elements at level i is 2i, requiring Θ(2i) logic gates to
move. So, we need Θ(2i × k/2i) = Θ(k)-sized circuits at level i. Thus, with
Θ(log N) levels, the total circuit size for k operations is Θ(k log N) and the
amortized cost for each conditional stack operation is Θ(log N).

Other Oblivious Data Structures. Zahur and Evans (2013) also present a
similar oblivious hierarchical queue data structure, essentially combining two
stacks, one of which only supports push operations and the other that only
supports pop operations. Since these stacks only need to support one of the
conditional operations, instead of using a 5-block buffer at each level they use
a 3-block buffer. Moving data between the two stacks requires an additional

5.1. Tailored Oblivious Data Structures 91

2 9 3
t0 = 3

4 7
t1 = 2

5 4
Level 0

t2 = 1

Level 1 Level 2

condPush(True, 7)

condPush(True, 8)

shift(0)

7 2 9 3
t0 = 4

4 7
t1 = 2

5 4
t2 = 1

8 7 2 9 3
t0 = 5

4 7
t1 = 2

5 4
t2 = 1

8 7 2
t0 = 3

4 7
t1 = 3

5 49 3
t2 = 1

Figure 5.3: Illustration of two conditional push operations for oblivious stack. The shift(0)
operation occurs after every two condPush operations.

multiplexer. Similarly to the oblivious stack, the amortized cost for operations
on the oblivious queue is Θ(log N).

Data structures designed to provide sublinear-cost oblivious operations
can be used for a wide range of memory access patterns, whenever there is
sufficient locality and predictability in the code to avoid the need to provide full
random access. Oblivious data structures may also take advantage of operations
that can be batched to combine multiple updates into single data structure scan.
For example, Zahur and Evans (2013) present an associative map structure
where a sequence of reads and writes with no internal dependencies can be
batched into one update. This involves constructing the new value of the data
structure by sorting the original values and the updates into a array, and only
keeping the most recent value of each key-value pair. This allows up to N
updates to be performed with a circuit of size Θ(N log2 N), with an amortized
cost per update of Θ(log2 N).

The main challenge is writing programs to take advantage of predictable
memory access patterns. A sophisticated compiler may be able to identify
predictable access patterns in typical code and perform the necessary transfor-
mations automatically, but this would require a deep analysis of the code and
no suitable compiler currently exists. Alternatively, programmers can manually
rewrite code to use libraries that implement the oblivious data structures
and manage all of the bookkeeping required to carry out the necessary shift

92 Oblivious Data Structures

operations. Another strategy for building efficient oblivious data structures is
to build upon a general-purpose Oblivious RAM, which is the focus of the rest
of this chapter.

5.2 RAM-Based MPC

Oblivious RAM (ORAM) was introduced by Goldreich and Ostrovsky (1996)
as a memory abstraction that allows arbitrary read and write operations without
leaking any information about which locations are accessed. The original
ORAM targeted the client-server setting, where the goal is to enable a client to
outsource data to an untrusted server and perform memory operations on that
outsourced data without revealing the data or access patterns to the server.

Ostrovsky and Shoup (1997) first proposed the general idea of using ORAM
to support secure multi-party computation by splitting the role of the ORAM
server between two parties. Gordon et al. (2012) were the first to propose a
specific method for adapting ORAM to secure computation (RAM-MPC, also
often called RAM-SC). In (Gordon et al., 2012), the ORAM state is jointly
maintained by both parties (client and server) within a secure computation
protocol. The key idea is to have each party store a share of the ORAM’s state,
and then use a general-purpose circuit-based secure computation protocol to
execute the ORAM access algorithms.

An ORAM system specifies an initialization protocol that sets up the
(possibly already populated) storage structure, and an access protocol that
implements oblivious read and write operations on the structure. To satisfy the
oblivious memory goals, an ORAM system must ensure that the observable
behaviors reveal nothing about the elements that are accessed. This means the
physical access patterns produced by the access protocol for any same-length
access sequences must be indistinguishable.

The initialization protocol takes as input an array of elements and initializes
an oblivious structure with those elements without revealing anything about
the initial values other than the number of elements. Assuming the access
protocol is secure, it is always possible to implement the initialization protocol
by performing the access protocol once for each input element. The costs of
initializing an ORAM this way, however, may be prohibitive, especially as
used in secure computation.

5.3. Tree-Based RAM-MPC 93

The RAM-MPC construction proposed by Gordon et al. (2012) imple-
mented an ORAM-based secure multi-party computation. To implement an
ORAM access, a circuit is executed within a 2PC that translates the oblivious
logical memory location into a set of physical locations that must be accessed
to perform the access. The physical locations are then revealed to the two
parties, but the ORAM design guarantees that these leak no information about
the logical location accessed. Each party then retrieves the data shares stored
in those locations, and passes them into the MPC. To complete the access, a
logical write occurs, as follows. The circuit executing within the MPC produces
new data elements to be written back to each of the physical locations. These
locations are output in plaintext, together with the data shares to be written
into parties’ local physical storage.

Gordon et al. (2012) proved that combining semi-honest 2PC with the
semi-honest ORAM protocol where ORAM state is split between the two
parties and operations are implemented within the 2PC results in a secure
RAM-based MPC in the semi-honest model.1

5.3 Tree-Based RAM-MPC

The construction of Gordon et al. (2012) builds on the tree-based ORAM
design of Shi et al. (2011). The underlying data structure in the tree-based
ORAM storing N elements is a binary tree of height log N , where each node
in the tree holds log N elements. Each logical memory location is mapped to a
random leaf node, and the logical index and value of the data element is stored
in encrypted form in one of the nodes along the path between the tree root and
that leaf. To access a data item, the client needs to map the item’s location to
its associated leaf node and retrieve from the server all nodes along the path
from the root to that node. Each of the nodes along the path is decrypted and
scanned to check if it is the requested data element.

A careful reader will notice the following technical difficulty. Performing
data look up requires mapping the logical location to the leaf node. However,
the size of this map is linear in N , and hence the map cannot be maintained
by the client with sublinear storage. The solution is to store the location map

1RAM-MPC can also be made to work in the malicious security model (Afshar et al.,
2015), but care must be taken to ensure that data stored outside the MPC is not corrupted.

94 Oblivious Data Structures

by the server using another instance of tree-based ORAM. Importantly, since
the size of the index map is smaller than the size of the data, the size of the
second ORAM tree can be smaller than N , as each item in the second tree can
store several mappings. To support larger ORAMs, a sequence of look-up trees
might be used, where only the smallest tree is stored by the client.

In RAM-MPC, the trees are secret-shared between the two parties. To
access an element, the parties execute a 2PC protocol that takes the shares of
the logical index and outputs (in shares to each party) the physical index for
the next level. A linear scan is used on the reconstructed elements along the
search path to identify the one corresponding to the requested logical index.
In the final tree, the shares of the requested data element are output to the
higher-level MPC protocol. Note that the data in each node could also be stored
in an ORAM to avoid the need for a linear scan, but since the bucket sizes are
small here and (at least with this ORAM design) there is substantial overhead
required to support an ORAM, a simple linear scan is preferred.

To complete the data access procedure, we need to ensure that the subse-
quent access results in an oblivious access pattern, even if the same element is
accessed again. To achieve this in tree-based ORAMs, the accessed logical
location is re-mapped to a random leaf node, and the updated data value is
inserted into the root node in the tree, ensuring its availability in the subsequent
access. To prevent the root node from overflowing, the protocol of Shi et al.
(2011) uses a balancing mechanism that pushes items down the tree after each
ORAM access. Randomly-selected elements are evicted and are moved down
the tree by updating both of the child nodes of the selected nodes (this is done
to mask which leaf-path contains the evicted element).

Intuitively, the access pattern is indistinguishable from a canonical one,
and hence an adversary cannot distinguish between two accesses. Indeed, every
time an element is accessed, it is moved to a random-looking location. Further,
every access retrieves a complete path from the root to a leaf, so as long as the
mapping between logical locations and leaves is random and not revealed to
the server, the server learns no information about which element is accessed.
The scheme does have the risk that a node may overflow as evicted elements
are moved down the tree, and not be able to store all of the elements required.
The probability of an overflow after k ORAM accesses with each node holding
O(log(kNδ)) elements is shown by Shi et al. (2011) to be less than δ, which

5.3. Tree-Based RAM-MPC 95

is why the number of elements in each node is set to O(log N) to make the
overflow probability negligible. The constant factors matter, however. Gordon
et al. (2012) simulated various configurations to find that a binary search on a
216 element ORAM (that is, only 16 operations) could be implemented with
less than 0.0001 probability of overflow with a bucket size of 32.

Variations on this design improved the performance of tree-based ORAM
for MPC have focused on using additional storage (called a stash) to store
overflow elements and reduce the sizes of the buckets needed to provide
negligible failure probability, as well as on improving the eviction algorithm.

Path ORAM. Path ORAM (Stefanov et al., 2013) added a stash to the design
as a fixed-size auxiliary storage for overflow elements, which would be scanned
on each request. The addition of a small stash enabled a more efficient eviction
strategy than the original binary-tree ORAM. Instead of selecting two random
nodes at each level for eviction and needing to update both child nodes of the
selected nodes to mask the selected element, Path ORAM performed evictions
on the access path from the root to the accessed node, moving elements along
this path from the root towards the leaves as much as possible. Since this path
is already accessed by the request, no additional masking is necessary to hide
which element is evicted. The Path ORAM design was adapted by Wang et al.
(2014a) to provide a more efficient RAM-MPC design, and they presented a
circuit design for a more efficient eviction circuit.

Circuit ORAM. Further advances in RAM-MPC designs were made both by
adapting improvements in traditional client-server ORAM designs to RAM-
MPC, as well as by observing differences between the costs and design space
options between the MPC and traditional ORAM setting and designing ORAM
schemes focused on the needs of MPC.

Wang et al. (2014a) argued that the main cost metric for ORAM designs
used in circuit-based secure computation should be circuit complexity, whereas
client-server designs were primarily evaluated based on (client-server) band-
width metrics. When used within an MPC protocol, the execution costs of an
ORAM are dominated by the bandwidth costs of executing the circuits needed
to carry out ORAM accesses and updates within the MPC protocol.

Wang et al. (2015b) proposed Circuit ORAM, an ORAM scheme designed

96 Oblivious Data Structures

specifically for optimal circuit complexity for use in RAM-MPC. Circuit
ORAM replaced the complex eviction method of Path ORAM with a more
efficient design where the eviction can be completed with a single scan of the
blocks on the eviction path, incorporating both the selection and movement of
data blocks within a single pass. Their key insight is to perform two metadata
scans first, so as to determine which blocks are to be moved, together with their
new locations. These scans can be run on the metadata labels, which are much
smaller than the full data blocks. After these scans have determined which
blocks to move, the actual data blocks can be moved using a single pass along
the path from the stash-root to the leaf, storing at most one block of data to
relocate as it proceeds.

Because the metadata scans are on much smaller data than the actual
blocks, the concrete total cost of the scan is minimized. Wang et al. (2015b)
proved that with block size of D = Ω(log2 N), Circuit ORAM can achieve
statistical failure probability of δ for block by setting the stash size to O(log 1

δ)
with circuit size of O(D(log N + log 1

δ)). The optimizations in Circuit ORAM
reduce the effective cost of ORAM (measured by the number of non-free gates
required in a circuit) by a factor of over 30 compared to the initial binary-tree
ORAM design for a representative 4GB data size with 32-bit blocks.

5.4 Square-Root RAM-MPC

Although the first proposed ORAM designs were hierarchical, early RAM-
MPC designs did not adopt these constructions because their implementation
seemed to require implementing a pseudo-random function (PRF) within the
MPC, and using the outputs of that function to perform an oblivious sort.
Both of these steps would be very expensive to do in a circuit-based secure
computation circuit, so RAM-MPC designs favored ORAMs based on the
binary-tree design which did not require sorting or a private PRF evaluation.

Zahur et al. (2016) observed that the classic square-root ORAM design of
Goldreich and Ostrovsky (1996) could in fact be adapted to work efficiently in
RAM-MPC by implementing an oblivious permutation where the PRF required
for randomizing the permutation would be jointly computed by the two parties
outside of the generic MPC. This led to a simple and efficient ORAM design,
which, unlike tree-based ORAMs, has zero statistical failure probability, since
there is no risk that a block can overflow. The design maintains a public

5.4. Square-Root RAM-MPC 97

set, Used, of used physical locations (revealing no information since logical
locations are assigned randomly to physical ones, and only accessed at most
once), and an oblivious stash at each level that stores accessed blocks. Since the
stash contains private data, it is stored in encrypted form as wire labels within
the MPC. Unlike in the tree-based ORAM designs where the stash is used
as a probabilistic mechanisms to deal with node overflows, in Square-Root
ORAM the stash is used deterministically on each access. Each access adds
one element to each of the level stashes, and all of the stashes must be linearly
scanned on every access. If an accessed element is found in the stash, to
preserve the obliviousness, the look-up continues with a randomly selected
element. The size of each stash determines the number of accesses that can
be done between reshufflings. Optimal results are obtained by setting the size
to Θ(

√
(N)), hence the name “square-root ORAM”. The oblivious shuffling

is performed using a Waksman network (Waksman, 1968), which requires
n log2 n − n + 1 oblivious swaps to permute n elements. Using the design from
Huang et al. (2012a), this can be done with one ciphertext per oblivious swap.

One major advantage of the Square-Root ORAM design is its concrete
performance, including initialization. All that is required to initialize is produce
a random permutation and obliviously permute all the input data, generating
the oblivious initial position map using the same method as the update protocol.
Compared to earlier ORAM designs, where initialization was done with
repeated writes, this approach dramatically reduces the cost of using the
ORAM in practice. Without considering initialization, Square-Root ORAM
has a per-access cost that is better than linear scan, once there are more than 32
blocks (for typical block sizes of 16 or 32 bytes), whereas Circuit ORAM is still
more expensive than linear scanning up to 211 blocks. Although Square-Root
ORAM has asymptotically worse behavior than Circuit ORAM, its concrete
costs per access are better for ORAM sizes up to 216 blocks. For such large
ORAMs, initialization costs become an important factor — initializing a
Square-Root ORAM requires Θ(log N) network round trips, compared to
Θ(N log N) for Circuit ORAM. Initializing a Circuit ORAM with N = 216

blocks would take several days, and its asymptotic benefits would only be
apparent for very expensive computations.

98 Oblivious Data Structures

5.5 Floram

Doerner and Shelat (2017) observed that even the sublinear-cost requirement,
which was an essential design aspect of traditional ORAM systems, was not
necessary to be useful in RAM-MPC. Since the cost of secure computation
far exceeds the cost of standard computation, ORAM designs that have linear
cost “outside of MPC”, but reduce the computation performed “inside MPC”,
may be preferred to sublinear ORAM designs. With this insight, Doerner
and Shelat (2017) revisited the Distributed Oblivious RAM approach of Lu
and Ostrovsky (2013) and based a highly scalable and efficient RAM-MPC
scheme on two-server private information retrieval (PIR). The scheme, known
as Floram (Function-secret-sharing Linear ORAM), can provide over 100×
improvements over Square-Root ORAM and Circuit ORAM across a range of
realistic parameters.

Distributed Oblivious RAM relaxes the usual security requirement of
ORAM (the indistinguishability of server traces). Instead, the ORAM server
is split into two non-colluding servers, and security requirement is that the
memory access patterns are indistinguishable based on any single server trace
(but allowed to be distinguishable if the traces of both servers are combined).
We note that it is not immediately obvious how to use this primitive in
constructing two-party MPC, since it requires two non-colluding servers in
addition to the third player—the ORAM client.

Private information retrieval (PIR) enables a client to retrieve a selected
item from a server, without revealing to the server which item was retrieved
(Chor et al., 1995). Traditionally, PIR schemes are different from ORAM in
that they only provide read operations, and that they allow a linear server
access cost whereas ORAM aims for amortized sublinear retrieval cost.

A point function is a function that outputs 0 for all inputs, except one:

Pα,β(x) =
{
β if x = α

0, otherwise.

Gilboa and Ishai (2014) introduced the notion of distributed point functions
(DPF), where a point function is secret-shared among two players with shares
that have sizes sublinear in the domain of the function, hiding the values
of both α and β. The output of each party’s evaluation of the secret-shared
function is a share of the output and a bit indicating if the output is valid:

5.5. Floram 99

yxp = Pα,βp (x) (party p’s share output of the function), and txp = (x = α) (a
share of 1 if x = α, otherwise a share of 0). Gilboa and Ishai (2014) showed
how this could be used to efficiently implement two-server private information
retrieval, and Boyle et al. (2016b) improved the construction.

The Floram design uses secret-shared distributed point functions to imple-
ment a two-party oblivious write-only memory (OWOM) and both a two-party
oblivious read-only memory (OROM). The ORAM is constructed by com-
posing the OWOM and OROM, but since it is not possible to read from the
write-only memory, Floram uses a linear-scan stash to store written elements
until it is full, at which point the state of the ORAM is refreshed by convert-
ing the write-only memory into oblivious read-only memory, replacing the
previous OROM and resetting the OWOM stash. In the OWOM, values are
stored using XOR secret sharing. To write to an element, all elements are
updated by xor-ing the current value with the output of a generated distributed
point function—so, the semantic value of the update is 0 for all elements other
than the one to be updated, and the difference between the current value and
updated value for the selected element.

Reading. In the OROM, each stored value is masked by a PRF evaluated
at its index and the masked value is secret-shared between the two OROMs.
To read element i from the OROM, each party obtains k ip from the MPC
corresponding to its key for the secret-shared DPF. Then, it evaluates Pk ip

(x)
on each element of its OROM and combines all the results with xor. For each
element other than x = i the output is its share of 0, so the resulting sum is
its share of the requested value, vip. This value is input into the MPC, and
xor-ed with the value provided by the other party to obtain Ri = vi1 ⊕ vi2. To
obtain the actual value of element i, Ri is xor-ed with the output of PRFk(i),
computed within the MPC. The PRF masking is necessary to avoid leaking
any information when the OROM is refreshed. Each read requires generating
a DPF (O(log N) secure computation and communication), O(N) local work
for the DPF evaluation at each element, and constant-size (independent of N)
secure computation to compute the PRF for unmasking. In addition, each read
requires scanning the stash within the MPC using a linear scan in case the
requested element has been updated since the last refresh. Hence, the cost of
the scheme depends on how large a stash is needed to amortize the refresh cost.

100 Oblivious Data Structures

Refreshing. Once the stash becomes full, the ORAM needs to be refreshed
by converting the OWOM into a newOROMand clearing the stash. This is done
by having each party generate a new PRF key (k1 generated by P1, k2 generated
by P2) and masking all of the values currently stored in its OWOM with keyed
PRF, W ′p[i] = PRFkp (i) ⊕Wp[i], for each party, p ∈ {1, 2}. The masked values
are then exchanged between the two parties. The OROM values are computed
by xor-ing the value received from the other party for each cell with their own
masked value to produce R[i] = PRFk1(i) ⊕ PRFk2(i) ⊕W1[i] ⊕W2[i], where
v[i] = W1[i] ⊕W2[i]. Each party passes in its PRF key to the MPC, so that
values can be unmasked within MPC reads by computing PRFk1(i) ⊕ PRFk2(i)
within the MPC. This enables the read value to be unmasked for used within the
MPC, without disclosing the private index i. Thus, refreshing the stash requires
O(N) local computation and communication, and no secure computation.
Because the refresh cost is relatively low, the optimal access period is O(

√
N)

(with low constants, so their concrete implementation used
√

N/8).

Floram offers substantial performance improvements over Square-Root
ORAM and all other prior ORAM constructions used in RAM-MPC, even
though its asymptotic costs are linear. The linear-cost operations of the OROM
and OWOM are implemented outside the MPC, so even though each access
requires O(N) computation, the concrete cost of this linear work is much
less that the client computation done within the MPC. In Doerner and Shelat
(2017)’s experiments, the cost of the secure computation is the dominant cost
up to ORAMs with 225 elements, after which the linear local computation cost
becomes dominant. Floram was over able to scale to support ORAMs with 232

four-byte elements with an average access time of 6.3 seconds over a LAN.
Floram also enables a simple and efficient initialization method using the

same mechanism as used for refreshing. The Floram design can also support
reads and writes where the index is not private very efficiently—the location
i can be read directly from the OWOM just by passing in the secret-shared
values in location i of each party’s share into the MPC. Another important
advantage of Floram is that instead of storing wire labels as is necessary for
other RAM-MPC designs, which expands the memory each party must store
by factor κ (the computational security parameter), each party only needs to
store a secret share of the data which is the same as the original size of the
data for each the OROM and OWOM.

5.6. Further Reading 101

5.6 Further Reading

Many other data structures have been proposed for efficient MPC, often
incorporating ORAM aspects. Keller and Scholl (2014) proposed efficient
MPC data structures for arrays, built on top of ORAM designs. Wang et al.
(2014b) devised oblivious data structures including priority queues that take
advantage of sparse and predictable access patterns in many applications, and
presented a general pointer-based technique to support efficient tree-based
access patterns.

We only touched on the extensive literature on oblivious RAM, focusing
on designs for MPC. ORAM continues to be an active research area, with many
different design options and tradeoffs to explore. Buescher et al. (2018) study
various MPC-ORAM designs in application settings and developed a compiler
that selects a suitable ORAM for the array-accesses in a high-level program.
Faber et al. (2015) proposed a three-party ORAM based on Circuit ORAM
that offers substantial cost reduction in the three-party, honest majority model.
Another new direction that may be useful for MPC ORAM is to allow some
amount of limited leakage of the data access pattern to gain efficiency (Chan
et al., 2017; Wagh et al., 2018).

6
Malicious Security

So far, we have focused on semi-honest protocols which provide privacy
and security only against passive adversaries who follow the protocol as
specified. The semi-honest threat model is very weak. It makes assumptions
that underestimate the power of realistic adversaries, for most scenarios. This
chapter discusses several protocols, summarized in Table 6.1, that are designed
to resist malicious adversaries.

6.1 Cut-and-Choose

Yao’s GC protocol is not secure against malicious adversaries. In particular,
P1 is supposed to generate and send a garbled version of F to P2. A malicious

Protocol Parties Rounds Based on
Cut-and-Choose (§6.1–6.4) 2 constant Yao’s GC (§3.1)
GMW compiler (§6.5.1) many (inherited) any semi-honest
BDOZ & SPDZ (§6.6) many circuit depth preprocessing
Authenticated garbling (§6.7) many constant BMR (§3.5)

Table 6.1: Summary of malicious MPC protocols discussed in this chapter.

102

6.1. Cut-and-Choose 103

P1 may send the garbling of a different circuit that P2 had not agreed to
evaluate, but P2 has no way to confirm the circuit is correct. The output of the
maliciously-generated garbled circuit may leak more than P2 has agreed to
reveal (for instance, P2’s entire input).

Main idea: check some circuits, evaluate others. The standard way to
address this problem is a technique called cut-and-choose, a general idea that
goes back at least to Chaum (1983), who used it to support blind signatures.

To use cut-and-choose to harden Yao’s GC protocol, P1 generates many
independent garbled versions of a circuit C and sends them to P2. P2 then
chooses some random subset of these circuits and asks P1 to “open” them
by revealing all of the randomness used to generate the chosen circuits. P2
then verifies that each opened garbled circuit is a correctly garbled version
of the agreed-upon circuit C. If any of the opened circuits are found to be
generated incorrectly, P2 knows P1 has cheated and can abort. If all of the
opened circuits are verified as correct, P2 continues the protocol. Since the
opened circuits have had all of their secrets revealed, they cannot be used for
the secure computation. However, if all of the opened circuits were correct, P2
has some confidence that most of the unopened circuits are also correct. These
remaining circuits can then be evaluated as in the standard Yao protocol.

Generating an output. Cut-and-choose cannot ensure with non-negligible
probability that all unopened circuits are correct. Let’s say that P1 generates s
garbled circuits, and each one is checked with independent probability 1

2 . Then
if P1 generates only one of the circuits incorrectly, then with (non-negligible)
probability 1

2 that circuit will not be chosen for checking and will become one
of the evaluation circuits. In this event P2 may get inconsistent outputs from
the evaluated circuits.

IfP2 sees inconsistent outputs, then it is obvious toP2 thatP1 ismisbehaving.
It is tempting to suggest that P2 should abort in this case. However, to do
so would be insecure! Suppose P1’s incorrect circuits are designed to be
selectively incorrect in a way that depends on P2’s input. For example, suppose
an incorrect circuit gives the wrong answer if the first bit of P2’s input is 1.
Then, P2 will only see disagreeing outputs if its first bit of input is 1. If P2
aborts in this case, the abort will then leak the first bit of its input. So we are in

104 Malicious Security

a situation where P2 knows for certain that P1 is cheating, but must continue
as if there was no problem to avoid leaking information about its input.

Traditionally, cut-and-choose protocols address this situation by making
P2 consider only the majority output from among the evaluated circuits. The
cut-and-choose parameters (number of circuits, probability of checking each
circuit) are chosen so that

Pr[majority of evaluated circuits incorrect ∧ all check circuits correct]

is negligible. In other words, if all of the check circuits are correct, P2 can
safely assume that the majority of the evaluation circuits are correct too. This
justifies the choice to use the majority output.

Input consistency. In cut-and-choose-based protocols, P2 evaluates several
garbled circuits. The fact that there are several circuits presents an additional
problem: a malicious party may try to use different inputs to different garbled
circuits. Input consistency refers to the problem of ensuring that both parties
use the same input to all circuits.

Ensuring consistency of P2’s inputs (i.e. preventing a malicious P2 from
submitting different inputs) is generally easier. Recall that in Yao’s protocol,
P2 picks up garbled input using oblivious transfer (OT) as receiver. The parties
can perform a single OT for each bit of P2’s input, whose payload is the garbled
input corresponding to that bit, for all circuits. Because P1 prepares the OT
payloads, they can ensure that P2 only receives garbled inputs corresponding
to the same input for all circuits.

Ensuring input consistency for P1 is more challenging. One approach
(see Section 6.8 for others), proposed by shelat and Shen (2011), has the
parties evaluate the function ((x, r), y) 7→ (F (x, y),H(x, r)) where H is a
2-universal hash function. The 2-universal property is that for all z , z′,
Pr[H(z) = H(z′)] = 1

2` , where the probability is over the random choice of H
and ` is the output length of H in bits. The idea is to make P1 first commit to
its (garbled) inputs; then P2 chooses a random H which determines the circuit
to garble. Since P1’s inputs are fixed before H is chosen, any inconsistent
inputs will lead to different outputs from H, which P2 can detect. In order to
ensure that the H-output does not leak information about P1’s input x, P1 also
includes additional randomness r as argument to H, which hides x when r

6.1. Cut-and-Choose 105

is sufficiently long. As shown by shelat and Shen (2011), multiplication by a
random Boolean matrix is a 2-universal hash function. When such a function
H is made public, the resulting circuit computing H consists of exclusively
XOR operations, and therefore adds little cost to the garbled circuits when
using the FreeXOR optimization.

Selective abort. Another subtle issue is even if all garbled circuits are correct,
P1 may still cheat by providing incorrect garbled inputs in the oblivious transfers.
Hence it does not suffice to just check the garbled circuits for correctness. For
instance, P1 may select its inputs to the OT so that whenever P2’s first input
bit is 1, P2 will pick up garbage wire labels (and presumably abort, leaking the
first input bit in the process). This kind of attack is known as a selective abort
attack (sometimes called selective failure). More generally, we care about when
P1 provides selectively incorrect garbled inputs in some OTs (e.g., P1 provides
a correct garbled input for 0 and incorrect garbled input for 1), so that whether
or not P2 receives incorrect garbled inputs depends on P2’s input.

An approach proposed by Lindell and Pinkas (2007) (and improved in
shelat and Shen (2013)) uses what are called k-probe-resistant matrices. The
idea behind this technique is to agree on a public matrix M and for P2 to
randomly encode its true input y into ỹ so that y = M ỹ. Then the garbled circuit
will compute (x, ỹ) 7→ F (x, M ỹ) and P2 will use the bits of ỹ (rather than y) as
its inputs to OT. The k-probe-resistant property of M is that for any nonempty
subset of rows of M, their XOR has Hamming weight at least k. Lindell and
Pinkas (2007) show that if M is k-probe-resistant, then the joint distribution
of any k bits of ỹ is uniform—in particular, it is independent of P2’s true input
y. Furthermore, when M is public, the computation of ỹ 7→ M ỹ consists of
only XOR operations and therefore adds no cost to the garbled circuit using
FreeXOR (though the increased size of ỹ contributes more oblivious transfers).

The k-probe-resistant encoding technique thwarts selective abort attacks
in the following way. If P1 provides selectively incorrect garbled inputs in at
most k OTs, then these will be selectively picked up by P2 according to at most
k specific bits of ỹ, which are completely uniform in this case. Hence, P2’s
abort condition is input-independent. If on the other hand P1 provides incorrect
garbled inputs in more than k OTs, then P2 will almost surely abort—at least
with probability 1 − 1/2k . If k is chosen so that 1/2k is negligible (e.g., if

106 Malicious Security

k = σ, the statistical security parameter), then any input-dependent differences
in abort probability are negligible.

Concrete parameters. Cut-and-choose mechanisms involve two main pa-
rameters: the replication factor is the number of garbled circuits that P1 must
generate, and the checking probability refers to the probability with which
a garbled circuit is chosen to be checked in the cut-and-choose phase. An
obvious goal for any cut-and-choose protocol is to minimize the replication
factor needed to provide adequate security.

In the cut-and-choose protocol described above, the only way an adversary
can break security of the mechanism is to cause a majority of evaluation
circuits to be incorrect, while still making all checked circuits correct. The
adversary’s task can be captured in the following abstract game:

• The player (arbitrarily) prepares ρ balls, each one is either red or green.
A red ball represents an incorrectly-garbled circuit while a green ball
represents a correct one.

• A random subset of exactly c balls is designated to be checked. If any
checked ball is red, the player loses the game.

• The player wins the game if the majority of the unchecked balls are red.

We want to find the smallest ρ and best c so that no player can win the game
with probability better than 2−λ. The analysis of shelat and Shen (2011) found
that the minimal replication factor is ρ ≈ 3.12λ, and the best number of items
to check is c = 0.6ρ (surprisingly, not 0.5ρ).

Cost-aware cut-and-choose. The results from shelat and Shen (2011) pro-
vide an optimal number of check and evaluation circuits, assuming the cost
of each circuit is the same. However, some circuits are evaluated and others
are checked, and these operations do not have equal cost. In particular, the
computational cost of evaluating a garbled circuit is about 25–50% the cost
of checking a garbled circuit for correctness since evaluating just involves
executing one path through the circuit, while checking must verify all entries
in the garble tables. Also, some variants of cut-and-choose (e.g., Goyal et al.
(2008)) allow P1 to send only a hash of a garbled circuit up-front, before P2

6.2. Input Recovery Technique 107

chooses which circuits to open. To open a circuit, P1 can simply send a short
seed that was used to derive all the randomness for the circuit. P2 can then
recompute the circuit and compare its hash to the one originally sent by P1.
In protocols like this, the communication cost of a checked circuit is almost
nothing—only evaluation circuits require significant communication.

Zhu et al. (2016) study various cut-and-choose games and derive parameters
with optimal cost, accounting for the different costs of checking and evaluating
a garbled circuit.

6.2 Input Recovery Technique

In the traditional cut-and-choose mechanisms we have described so far, the
evaluator (P2) evaluates many garbled circuits and reports the majority output.
As previously mentioned, the overhead of this method is well understood—the
replication factor for security 2−λ is roughly 3.12λ. Reducing this replication
factor requires a different approach to the entire cut-and-choose mechanism.

Lindell (2013) and Brandão (2013) independently proposed cut-and-choose
protocols breaking this replication factor barrier. These protocols give P2 a way
of identifying the correct output in the event that some of the evaluated circuits
disagree. Hence, the only way for a malicious P1 to break security is to force
all of the evaluated circuits to be incorrect in the same way (rather than simply
forcing amajority of them to be incorrect as in the previous protocols). Suppose
there are ρ circuits, and each one is checked with independent probability 1

2 .
The only way to cheat is for all of the correct circuits to be opened and all of
the incorrect circuits to be evaluated, which happens with probability 2−ρ. In
short, one can achieve 2−λ security with replication factor only ρ = λ rather
than ρ ≈ 3.12λ. The protocol of Lindell (2013) proceeds in two phases:

1. The parties do a fairly typical cut-and-choose with P1 generating many
garbled circuits, and P2 choosing some to check and evaluating the rest.
Suppose P2 observes different outputs from different garbled circuits.
Then, P2 obtains output wire labels for the same wire corresponding to
opposite values (e.g., a wire label encoding 0 on the first output wire
of one circuit, a label encoding 1 on the first output wire of another
circuit). When P1 is honest, it is infeasible to obtain such contradictory
wire labels. Hence, the wire labels serve as “proof of cheating”. But,

108 Malicious Security

for the same reasons as mentioned above, P2 must not reveal whether it
obtained such a proof since that event may be input-dependent and leak
information about P2’s private input.

2. In the second phase, the parties do a malicious-secure computation of
an input recovery function: if P2 can provide proof of cheating in phase
1, then the function “punishes” P1 by revealing its input to P2. In that
case, P2 has both parties’ inputs and can simply compute the correct
output locally. Otherwise, when P2 does not provide proof of cheating,
P2 learns nothing from this second phase. Either way, P1 learns nothing
from this second phase.

There are many subtle details that enable this protocol to work. Some of
the most notable are:

• The secure computation in the second phase is done by using a traditional
(majority-output) cut-and-choose protocol. However, the size of this
computation can be made to depend only on the size of P1’s input. In
particular, it does not depend on the size of the circuit the parties are
evaluating in phase 1.

• In order to make the circuits for the second phase small, it is helpful
if all garbled circuits share the same output wire labels. When this is
the case, opening any circuit would reveal all output wire labels for all
evaluation circuits and allows P2 to “forge” a proof of cheating. Hence
the check circuits of phase 1 cannot be opened until the parties’ inputs
to phase 2 have been fixed.

• The overall protocol must enforce that P1 uses the same input to all
circuits in both phases. It is important that if P1 uses input x in phase 1
and cheats, it cannot prevent P2 from learning that same x in phase 2.
Typical mechanisms for input consistency (such as the 2-universal hash
technique described above) can easily be adapted to ensure consistency
across both phases in this protocol.

• For the reasons described previously, P2 cannot reveal whether it ob-
served P1 cheating in the first phase. Analogously, the protocol gives
P2 two avenues to obtain the final output (either when all phase-one

6.3. Batched Cut-and-Choose 109

circuits agree, or by recovering P1’s input in phase two and computing
the output directly), but P1 cannot learn which one was actually used.
It follows that the parties must always perform the second phase, even
when P1 is caught cheating.

6.3 Batched Cut-and-Choose

As a motivating scenario, consider the case where two parties know in advance
that they would like to perform N secure evaluations of the same function f
(on unrelated inputs). In each secure computation, P1 would be required to
generate many garbled circuits of f for each cut-and-choose. The amortized
costs for each evaluation can be reduced by performing a single cut-and-choose
for all N evaluation instances.

Consider the following variant of the cut-and-choose abstract game:

1. The player (arbitrarily) prepares Nρ + c balls, each one is either red or
green.

2. A random subset of exactly c balls is designated to be checked. If any
checked ball is red, the player loses the game.

3. [new step] The unchecked balls are randomly assigned into N buckets,
with each bucket containing exactly ρ balls.

4. [modified step] The player wins if any bucket contains only red balls (in
a different variant, one might specify that the player wins if any bucket
contains a majority of red balls).

This game naturally captures the following high-level idea for a cut-and-
choose protocol suitable for a batch of N evaluations of the same function.
First, P1 generates Nρ + c garbled circuits. P2 randomly chooses c of them to
be checked and randomly assigns the rest into N buckets. Each bucket contains
the circuits to be evaluated in a particular instance. Here we are assuming that
each instance will be secure as long as it includes at least one correct circuit
(for example, using the mechanisms from Section 6.2).

Intuitively, it is now harder for the player (adversary) to beat the cut-and-
choose game, since the evaluation circuits are further randomly assigned to

110 Malicious Security

buckets. The player must get lucky not only in avoiding detection during
checking, but also in having many incorrect circuits placed in the same bucket.

Zhu and Huang (2017) give an asymptotic analysis showing that replication
ρ = 2 + Θ(λ/log N) suffices to limit the adversary to success probability 2−λ.
Compare this to single-instance cut-and-choose which requires replication
factor O(λ).1 The improvement over single-instance cut-and-choose is not just
asymptotic, but is significant for reasonable values of N . For instance, for
N = 1024 executions, one achieves a security level of 2−40 if P1 generates
5593 circuits, of which only 473 are checked. Then only ρ = 5 circuits are
evaluated in each execution.

Lindell and Riva (2014) and concurrently Huang et al. (2014) described
batch cut-and-choose protocols following the high-level approach described
above. The former protocol was later optimized and implemented in Lindell
and Riva (2015). The protocols use the input-recovery technique so that each
instance is secure as long as at least one correct circuit is evaluated.

6.4 Gate-level Cut-and-Choose: LEGO

In batch cut-and-choose, the amortized cost per bucket/instance decreases as
the number of instances increases. This observation was the foundation of the
LEGO paradigm for malicious-secure two-party computation, introduced by
Nielsen and Orlandi (2009). The main idea is to do a batch cut-and-choose on
individual garbled gates rather than on entire garbled circuits:

1. P1 generates a large number of independently garbled NAND gates, and
the parties perform a batch cut-and-choose on them. P2 chooses some
gates to check and randomly assigns the remaining gates into buckets.

2. The buckets of gates are assembled into a garbled circuit in a process
called soldering (described in more detail below).

• The gates within a single bucket are connected so that they collec-
tively act like a fault-tolerant garbled NAND gate, which correctly

1The replication factor in this modified game measures only the number of evaluation
circuits, whereas for a single instance we considered the total number (check and evaluation) of
circuits. In practice, the number of checked circuits in batch cut-and-choose is quite small, and
there is little difference between amortized number of total circuits vs. amortized number of
evaluation circuits.

6.4. Gate-level Cut-and-Choose: LEGO 111

computes the NAND function as long as a majority of gates in the
bucket are correct.

• The fault-tolerant garbled gates are connected to form the desired
circuit. The connections between garbled gates transfer the garbled
value on the output wire of one gate to the input wire of another.

3. P2 evaluates the single conceptual garbled circuit, which is guaranteed
to behave like a correct garbled circuit with overwhelming probability.

We now describe the soldering process in more detail, using the termi-
nology of Frederiksen et al. (2013). The paradigm requires a homomorphic
commitment, meaning that if P1 commits to values A and B independently,
it can later either decommit as usual, or can generate a decommitment that
reveals only A ⊕ B to P2.

P1 prepares many individual garbled gates, using the FreeXOR technique.
For each wire i, P1 chooses a random “zero-label” k0

i ; the other label for that
wire is k1

i = k0
i ⊕ ∆, where ∆ is the FreeXOR offset value common to all gates.

P1 sends each garbled gate, and commits to the zero-label of each wire, as well
as to ∆ (once and for all for all gates). In this way, P1 can decommit to k0

i or to
k1
i = k0

i ⊕ ∆ using the homomorphic properties of the commitment scheme.
If a gate is chosen to be checked, then P1 cannot open all wire labels

corresponding to the gate. This would reveal the global ∆ value and break
the security of all gates. Instead, P2 chooses a one of the four possible input
combinations for the gate at random, and P1 opens the corresponding input and
output labels (one label per wire). Then, P2 can check that the gate evaluates
correctly on this combination. An incorrectly-garbled gate can be therefore
caught only with probability 1

4 (Zhu and Huang (2017) provides a way to
increase this probability to 1

2). This difference affects the cut-and-choose
parameters (e.g., bucket size) by a constant factor.

Soldering corresponds to connecting various wires (attached to individual
gates) together, so that the logical value on a wire can be moved to another
wire. Say that wire u (with zero-label k0

u) and wire v (with zero-label k0
v) are to

be connected. Then P1 can decommit to the solder value σu,v = k0
u ⊕ k0

v . This
value allows P2 to transfer a garbled value from wire u to wire v during circuit
evaluation. For example, if P2 holds wire label kb

u = k0
u ⊕ b · ∆, representing

unknown value b, then xor-ing this wire label with the solder value σu,v results

112 Malicious Security

in the appropriate wire label on wire v:

kb
u ⊕ σu,v = (k0

u ⊕ b · ∆) ⊕ (k0
u ⊕ k0

v) = k0
v ⊕ b · ∆ = kb

v

Gates within a bucket are assembled into a fault-tolerant NAND gate by
choosing the first gate as an “anchor” and soldering wires of other gates to the
matching wire of the anchor (i.e., solder the left input of each gate to the left
input of the anchor). With ρ gates in a bucket, this gives ρ ways to evaluate the
bucket starting with the garbled inputs of the anchor gate—transfer the garbled
values to another gate, evaluate the gate, and transfer the garbled value back to
the anchor. If all gates are correct, all ρ of the evaluation paths will result in an
identical output wire label. If some gates are incorrect, the evaluator takes the
majority output wire label.

The LEGO paradigm can take advantage of the better parameters for batch
cut-and-choose, even in the single-execution setting. If the parties wish to
securely evaluate a circuit of N gates, the LEGO approach involves a replication
factor of O(1) +O(λ/log N), where λ is the security parameter. Of course, the
soldering adds many extra costs that are not present in circuit-level cut-and-
choose. However, for large circuits the LEGO approach gives a significant
improvement over circuit-level cut-and-choose that has replication factor λ.

Variations on LEGO. The LEGO protocol paradigm has been improved in
a sequence of works (Frederiksen et al., 2013; Frederiksen et al., 2015; Zhu
and Huang, 2017; Kolesnikov et al., 2017b; Zhu et al., 2017). Some notable
variations include:

• Avoiding majority-buckets in favor of buckets that are secure if even one
garbled gate is correct (Frederiksen et al., 2015).

• Performing cut-and-choose at the level of component subcircuits con-
sisting of multiple gates (Kolesnikov et al., 2017b).

• Performing cut-and-choose with a fixed-size pool of gates that is con-
stantly replenished, rather than generating all of the necessary garbled
gates up-front (Zhu et al., 2017).

6.5. Zero-Knowledge Proofs 113

6.5 Zero-Knowledge Proofs

An alternative to the cut-and-choose approach is to convert a semi-honest
protocol into a malicious-secure protocol by incorporating a proof that the
protocol was executed correctly. Of course, the proof cannot reveal the secrets
used in the protocol. Goldreich et al. (1987) shows how to use zero-knowledge
(ZK) proofs to turn any semi-honest MPC protocol into one that is secure
against malicious adversaries (Section 6.5.1).

Zero-knowledge proofs are a special case of malicious secure computation,
and were introduced in Section 2.4. ZK proofs allow a prover to convince a
verifier that it knows x such that C(x) = 1, without revealing any additional
information about x, where C is a public circuit.

6.5.1 GMW Compiler

Goldreich, Micali, and Wigderson (GMW) showed a compiler for secure multi-
party computation protocols that uses ZK proofs (Goldreich et al., 1987). The
compiler takes as input any protocol secure against semi-honest adversaries,
and generates a new protocol for the same functionality that is secure against
malicious adversaries.

Let π denote the semi-honest-secure protocol. The main idea of the GMW
compiler is to run π and prove in zero-knowledge that every message is the
result of running π honestly. The honest parties abort if any party fails to
provide a valid ZK proof. Intuitively, the ZK proof ensures that a malicious
party can either run π honestly, or cheat in π but cause the ZK proof to fail. If π
is indeed executed honestly, then the semi-honest security of π ensures security.
Whether or not a particular message is consistent with honest execution of π
depends on the parties’ private inputs. Hence, the ZK property of the proofs
ensures that this property can be checked without leaking any information
about these private inputs.

Construction. The main challenge in transforming a semi-honest protocol
into an analogous malicious-secure protocol is to precisely define the circuit
that characterizes the ZK proofs. Two important considerations are:

1. Each party must prove that each message of π is consistent with honest
execution of π, on a consistent input. In other words, the ZK proof

114 Malicious Security

should prevent parties from running π with different inputs in different
rounds.

2. The “correct” next message of π is a function of not only the party’s
private input, but also their private random tape. π guarantees security
only when each party’s random tape is chosen uniformly. In particular,
the protocol may be insecure if the party runs honestly but on some
adversarially-chosen random tape.

The first consideration is addressed by having each party commit to its
input upfront. Then all ZK proofs refer to this commitment: e.g., the following
message is consistent with an honest execution of π, on the input that is
contained inside the public commitment.

The second consideration is addressed by a technique called coin-tossing
into the well. For concreteness, we focus on the ZK proofs generated by P1.
Initially P1 produces a commitment to a random string r. Then P2 sends a
value r ′ in the clear. Now P1 must run π with r ⊕ r ′ as the random tape. In this
way, P1 does not have unilateral control over its effective random tape r ⊕ r ′—
it is distributed uniformly even if P1 is corrupt. P1’s ZK proofs can refer to the
commitment to r (and the public value r ′) to guarantee that π is executed with
r ⊕ r ′ as its random tape.

The full protocol description is given in Figure 6.1.

6.5.2 ZK from Garbled Circuits

Jawurek, Kerschbaum, and Orlandi (JKO) presented an elegant zero-knowledge
protocol based on garbled circuits (Jawurek et al., 2013). Since zero-knowledge
is a special case of malicious secure computation, one can obviously base
zero-knowledge on any cut-and-choose-based 2PC protocol. However, these
protocols require many garbled circuits. The JKO protocol on the other hand
achieves zero-knowledge using only one garbled circuit.

The main idea is to use a single garbled circuit for both evaluation
and checking. In standard cut-and-choose, opening a circuit that is used for
evaluation would reveal the private input of the garbled circuit generator.
However, the verifier in a zero-knowledge protocol has no private input. Thus,
the verifier can play the role of circuit garbler.

6.5. Zero-Knowledge Proofs 115

Parameters: Semi-honest-secure two-party protocol π = (π1, π2), where
πb(x, r,T) denotes the next message for party Pb on input x, random tape
r , and transcript so far T . A commitment scheme Com.

Protocol π∗: (P1 has input x1 and P2 has input x2)

1. For b ∈ {1, 2}, Pb chooses random rb and generates a commitment
cb to (xb, rb) with decommitment δb.

2. For b ∈ {1, 2}, Pb chooses and sends random r ′3−b (a share of the
counterpart’s random tape).

3. The parties alternate between b = 1 and b = 2 as follows, until the
protocol terminates:

(a) LetT be the transcript of π-messages so far (initially empty). Pb

computes and sends the next π-message, t = πb(xb, rb ⊕ r ′
b
,T).

If instead πb terminates, Pb terminates as well (with whatever
output πb specifies).

(b) Pb acts as prover in a ZK proof with private inputs xb, rb, δb,
and public circuit C[πb, cb, r ′b,T, t] that is defined as:
C[π, c, r ′,T, t](x, r, δ):

return 1 iff δ is a valid opening of commitment
c to (x, r) and t = π(x, r ⊕ r ′,T).

The other party P3−b aborts if verification of the ZK proof fails.

Figure 6.1: GMW compiler applied to a semi-honest-secure protocol π.

Suppose the prover P1 wishes to prove ∃w : F (w) = 1 where F is a public
function. The JKO protocol proceeds in the following steps:

1. The verifier P2 generates and sends a garbled circuit computing F .

2. The prover picks up garbled inputs for w, using oblivious transfer.

3. The prover evaluates the circuit and obtains the output wire label
(corresponding to output 1) and generates a commitment to this wire
label.

116 Malicious Security

4. The verifier opens the garbled circuit and the prover checks that it was
generated correctly. If so, then the prover opens the commitment to the
output wire label.

5. The verifier accepts if the prover successfully decommits to the 1 output
wire label of the garbled circuit.

The protocol is secure against a cheating prover because at the time P1
generates a commitment in step 3, the garbled circuit has not yet been opened.
Hence, if P1 does not know an input that makes F output 1, it is hard to predict
the 1 output wire label at this step of the protocol. The protocol is secure
against a cheating verifier because the prover only reveals the result of the
garbled circuit after the circuit has been confirmed to be generated correctly.

Because the garbled circuits used for this protocol only need to provide
authenticity and not privacy, their garbled tables can be implemented less
expensively than for standard Yao’s. Zahur et al. (2015) show that the half-
gates method can be used to reduce the number of ciphertexts needed for a
privacy-free garbled circuit to a single ciphertext for each AND gate, and no
ciphertexts for XOR gates.

6.6 Authenticated Secret Sharing: BDOZ and SPDZ

Recall the approach for secret-sharing based MPC using Beaver triples (Sec-
tion 3.4). This protocol paradigm is malicious-secure given suitable Beaver
triples and any sharing mechanism such that:

1. Sharings are additively homomorphic,

2. Sharings hide the underlying value against a (malicious) adversary, and

3. Sharings can be opened reliably, even in the presence of a malicious
adversary.

In this section we describe two sharing mechanisms with these properties:
BDOZ (Section 6.6.1) and SPDZ (Section 6.6.2).

6.6. Authenticated Secret Sharing: BDOZ and SPDZ 117

6.6.1 BDOZ Authentication

TheBendlin-Damgård-Orlandi-Zakarias (BDOZorBeDOZa) technique (Bendlin
et al., 2011) incorporates information-theoretic MACs into the secret shares.
Let F be the underlying field, with |F| ≥ 2κ where κ is the security parameter.
Interpreting K,∆ ∈ F as a key, define MACK,∆(x) = K + ∆ · x.

This construction is an information-theoretic one-time MAC. An adversary
who sees MACK,∆(x) for a chosen x cannot produce another valid MAC,
MACK,∆(x ′), for x , x ′. Indeed, if an adversary could compute such a MAC,
then it could compute ∆:

(x − x ′)−1
(
MACK,∆(x) −MACK,∆(x ′)

)
= (x − x ′)−1

(
K + ∆x − K − ∆x ′

)
= (x − x ′)−1(∆(x − x ′)) = ∆

But seeing only MACK,∆(x) perfectly hides ∆ from the adversary. Hence, the
probability of computing a MAC forgery is bounded by 1/|F| ≤ 1/2κ , the
probability of guessing a randomly chosen field element ∆.

In fact, the security of this MAC holds even when an honest party has many
MAC keys that all share the same ∆ value (but with independently random K
values). We refer to ∆ as the global MAC key and K as the local MAC key.

The idea of BDOZ is to authenticate each party’s shares with these
information-theoretic MACs. We start with the two-party case. Each party Pi

generates a globalMAC key∆i . Then [x] denotes the secret-sharingmechanism
where P1 holds x1,m1 and K1 and P2 holds x2,m2 and K2 such that:

1. x1 + x2 = x (additive sharing of x),

2. m1 = K2 +∆2x1 = MACK2,∆2(x1) (P1 holds a MAC of its share x1 under
P2’s MAC key), and

3. m2 = K1 +∆1x2 = MACK1,∆1(x2) (P2 holds a MAC of its share x2 under
P1’s MAC key).

Next, we argue that this sharing mechanism satisfies the properties required by
the Beaver-triple paradigm (Section 3.4):

118 Malicious Security

sharing P1 has P2 has
[x] x1 x2

K1 K2
MACK2,∆2(x1) MACK1,∆1(x2)

[x ′] x ′1 x ′2
K ′1 K ′2
MACK′2,∆2(x ′1) MACK′1,∆1(x ′2)

[x + x ′] x1 + x ′1 x2 + x ′2
K1 + K ′1 K2 + K ′2
MACK2+K

′
2,∆2(x1 + x ′1) MACK1+K

′
1,∆1(x2 + x ′2)

Figure 6.2: BDOZ authenticated sharing

• Privacy: the individual parties learn nothing about x since they only
hold one additive share, xp, and mp reveals nothing about x without
knowing the other party’s keys (which are never revealed).

• Secure opening: To open, each party announces its (xp,mp), allowing
both parties to learn x = x1 + x2. Then, P1 can use its MAC key to
check whether m2 = MACK1,∆1(x2) and abort if this is not the case. P2
performs an analogous check on m1. Note that opening this sharing to
any different value corresponds exactly to the problem of breaking the
underlying one-time MAC.

• Homomorphism: The main idea is that when all MACs in the system
use the same ∆ value, the MACs become homomorphic in the necessary
way. That is,

MACK,∆(x) +MACK′,∆(x ′) = MACK+K′,∆(x + x ′)

Here we focus on adding shared values [x] + [x ′]; the other required
forms of homomorphism work in a similar way. The sharings of [x] and
[x ′] and the resulting BDOZ sharing of [x + x ′] is shown in Figure 6.2.

The BDOZ approach generalizes to n parties in a straightforward (but
expensive) way. All parties have global MAC keys. In a single sharing [x], the

6.6. Authenticated Secret Sharing: BDOZ and SPDZ 119

parties have additive shares of x and each party’s share is authenticated under
every other party’s MAC key.

Generating triples. The BDOZ sharing method satisfies the security and
homomorphism properties required for use in the abstract Beaver-triples
approach. It remains to be seen how to generate Beaver triples in this format.

Note that BDOZ shares work naturally even when the payloads (i.e., x in
[x]) are restricted to a subfield of F. The sharings [x] are then homomorphic
with respect to that subfield. A particularly useful case is to use BDOZ for
sharings of single bits, interpreting {0, 1} as a subfield of F = GF(2κ). Note
that F must be exponentially large for security (authenticity) to hold.

The state of the art method for generating BDOZ shares of bits is the
scheme used by Tiny-OT (Nielsen et al., 2012). It uses a variant of traditional
OT extension (Section 3.7.2) to generate BDOZ-authenticated bits [x]. It then
uses a sequence of protocols to securely multiply these authenticated bits
needed to generate the required sharings for Beaver triples.

6.6.2 SPDZ Authentication

In BDOZ sharing, each party’s local part of [x] contains a MAC for every other
party. In other words, the storage requirement of the protocol scales linearly
with the number of parties. A different approach introduced by Damgård,
Pastro, Smart, and Zakarias (SPDZ, often pronounced “speeds”) (Damgård
et al., 2012b) results in constant-sized shares for each party.

As before, we start with the two-party setting. The main idea is to have a
global MAC key ∆ that is not known to either party. Instead, the parties hold
∆1 and ∆2 which can be thought of as shares of a global ∆ = ∆1 + ∆2. In a
SPDZ sharing [x], P1 holds (x1, t1) and P2 holds (x2, t2), where x1 + x2 = x
and t1 + t2 = ∆ · x. Thus, the parties hold additive shares of x and of ∆ · x. One
can think of ∆ · x as a kind of “0-time information-theoretic MAC” of x.

This scheme clearly provides privacy for x. Next, we show that it also
provides the other two properties required for Beaver triples:

• Secure opening: We cannot have the parties simply announce their
shares, since that would reveal ∆. It is important that ∆ remain secret
throughout the entire protocol. To open [x] without revealing ∆, the
protocol proceeds in 3 phases:

120 Malicious Security

1. The players announce only x1 and x2. This determines the (unau-
thenticated) candidate value for x.

2. Note that if this candidate value for x is indeed correct, then

(∆1x − t1) + (∆2x − t2) = (∆1 + ∆2)x − (t1 + t2)
= ∆x − (∆x)
= 0

Furthermore, P1 can locally compute the first term (∆1x − t1) and
P2 can compute the other term. In this step of the opening, P1
commits to the value ∆1x − t1 and P2 commits to ∆2x − t2.

3. The parties open these commitments and abort if their sum is not
0. Note that if the parties had simply announced these values one
at a time, then the last party could cheat by choosing the value that
causes the sum to be zero. By using a commitment, the protocol
forces the parties to know these values in advance.

To understand the security of this opening procedure, note that when P1
commits to some value c, it expects P2 to also commit to −c. In other
words, the openings of these commitments are easily simulated, which
implies that they leak nothing about ∆.

It is possible to show that if a malicious party is able to successfully
open [x] to a different x ′, then that party is able to guess ∆. Since the
adversary has no information about ∆, this event is negligibly likely.

• Homomorphism: In a SPDZ sharing [x], the parties’ shares consist of
additive shares of x and additive shares of ∆ · x. Since each of these
are individually homomorphic, the SPDZ sharing naturally supports
addition and multiplication-by-constant.

To support addition-by-constant, the parties must use their additive
shares of ∆ as well. Conceptually, they locally update x 7→ x + c and
locally update ∆x 7→ ∆x + ∆c. This is illustrated in Figure 6.3.

Generating SPDZ shares. Since SPDZ shares satisfy the properties needed
for abstract Beaver-triple-based secure computation, the only question remains

6.7. Authenticated Garbling 121

sharing P1 has P2 has sum of P1 and P2 shares
[x] x1 x2 x

t1 t2 ∆x
[x + c] x1 + c x2 x + c

t1 + ∆1c t2 + ∆2c ∆(x + c)

Figure 6.3: SPDZ authenticated secret sharing.

how to generate Beaver triples in the SPDZ format. The paper that initially
introduced SPDZ (Damgård et al., 2012b) proposed a method involving
somewhat homomorphic encryption. Followup work suggests alternative
techniques based on efficient OT extension (Keller et al., 2016).

6.7 Authenticated Garbling

Wang et al. (2017b) introduced an authenticated garbling technique for
multiparty secure computation that combines aspects of information-theoretic
protocols (e.g., authenticated shares and Beaver triples) and computational
protocols (e.g., garbled circuits and BMR circuit generation). For simplicity,
we describe their protocol in the two-party setting but many (not all) of the
techniques generalize readily to the multi-party setting (Wang et al., 2017c).

A different perspective on authenticated shares of bits. One starting
point is the BDOZ method for authenticated secret-sharing of bits. Recall that
a 2-party BDOZ sharing [x] corresponds to the following information:

sharing P1 has P2 has
[x] x1 x2

K1 K2
T1 = K2 ⊕ x1∆2 T2 = K1 ⊕ x2∆1

Since we consider x, x1, x2 to be bits, the underlying field is F = GF(2κ) and
we write the field addition operation as ⊕. An interesting observation is that:

(K1 ⊕ x1∆1)︸ ︷︷ ︸
known to P1

⊕ (K1 ⊕ x2∆1)︸ ︷︷ ︸
known to P2

= (x1 ⊕ x2)∆1 = x∆1

122 Malicious Security

Hence, a side-effect of a BDOZ sharing [x] is that parties hold additive shares
of x∆1, where ∆1 is P1’s global MAC key.

Distributed garbling. Consider a garbled circuit in which the garbler P1
chooses wire labels k0

i , k1
i for each wire i. Departing from the notation from

Section 3.1.2, we will let the superscript b in kb
i denote the public “point-and-

permute” pointer bit of a wire label (that the evaluator learns), rather than its
semantic value true/false. We let pi denote the corresponding pointer bit, so
that kpi

i is the label representing false.
We focus on a single AND gate with input wires a, b and output wire c.

Translating the standard garbled circuit construction into this perspective (i.e.,
organized according to the pointer bits), we obtain the following garbled table:

e0,0 = H(k0
a‖k0

b) ⊕ kpc ⊕pa ·pb
c

e0,1 = H(k0
a‖k1

b) ⊕ kpc ⊕pa ·pb
c

e1,0 = H(k1
a‖k0

b) ⊕ kpc ⊕pa ·pb
c

e1,1 = H(k1
a‖k1

b) ⊕ kpc ⊕pa ·pb
c

Using FreeXOR, k1
i = k0

i ⊕ ∆ for some global value ∆. In that case, we can
rewrite the garbled table as:

e0,0 = H(k0
a‖k0

b) ⊕ k0
c ⊕ (pc ⊕ pa · pb)∆

e0,1 = H(k0
a‖k1

b) ⊕ k0
c ⊕ (pc ⊕ pa · pb)∆

e1,0 = H(k1
a‖k0

b) ⊕ k0
c ⊕ (pc ⊕ pa · pb)∆

e1,1 = H(k1
a‖k1

b) ⊕ k0
c ⊕ (pc ⊕ pa · pb)∆

One of themain ideas in authenticated garbling is for the parties to construct
such garbled gates in a somewhat distributed fashion, in such a way that neither
party knows the pi permute bits.

Instead, suppose the parties only have BDOZ sharings of the form
[pa], [pb], [pa · pb], [pc], where neither party knows these pi values in the
clear. Suppose further that P1 chooses the garbled circuit’s wire labels so
that ∆ = ∆1 (i.e., its global MAC key from BDOZ). The parties therefore
have additive shares of pa∆, pb∆, and so on. They can use the homomorphic
properties of additive secret sharing to locally obtain shares of (pc ⊕ pa · pb)∆,
(pc ⊕ pa · pb)∆, and so on.

6.7. Authenticated Garbling 123

Focusing on the first ciphertext in the garbled table, we can see:

e0,0 = H(k0
a‖k0

b) ⊕ k0
c︸ ︷︷ ︸

known to P1

⊕ (pc ⊕ pa · pb)∆︸ ︷︷ ︸
parties have additive shares

Hence, using only local computation (P1 simply adds the appropriate value to
its share), parties can obtain additive shares of e0,0 and all other rows in the
garbled table.

In summary, the distributed garbling procedure works by generating BDOZ-
authenticated shares of random permute bits [pi] for every wire in the circuit,
along with Beaver triples [pa], [pb], [pa · pb] for every AND gate in the circuit.
Then, using only local computation, the parties can obtain additive shares of a
garbled circuit that uses the pi values as its permute bits. P1 sends its shares of
the garbled circuit to P2, who can open it and evaluate.

Authenticating the garbling. As in Yao’s protocol, the garbler P1 can cheat
and generate an incorrect garbled circuit — in this case, by sending incorrect
additive shares. For example, P1 can replace the “correct” e0,0 value in some
gate by an incorrect value, while leaving the other three values intact. In this
situation, P2 obtains an incorrect wire label whenever the logical input to this
gate is (pa, pb). Even assuming P2 can detect this condition and abort, this
leads to a selective abort attack for a standard garbled circuit. By observing
whether P2 aborts, P1 learns whether the input to this gate was (pa, pb).

However, this is not actually a problem for distributed garbling. While it is
still true that P2 aborts if and only if the input to this gate was (pa, pb), P1 has
no information about pa, pb — hiding these permute bits from P1 causes P2’s
abort probability to be input-independent!

Constructing a garbled circuit with secret permute bits addresses the
problem of privacy against a corrupt P1. However, P1 may still break the
correctness of the computation. For instance, P1 may act in a way that flips one
of the pc ⊕ pa · pb bits. To address this, Wang et al. (2017b) relies on the fact
that the parties have BDOZ sharings of the pi indicator bits. These sharings
determine the “correct” pointer bits that P2 should see. For example, if the
input wires to an AND gate have pointer bits (0, 0) then the correct pointer bit
for the output wire is pc ⊕ pa · pb. To ensure correctness of the computation, it
suffices to ensure that P2 always receives the correct pointer bits. As discussed

124 Malicious Security

previously, the parties can obtain authenticated BDOZ sharings of pc ⊕ pa · pb.
We therefore augment the garbled circuit so that each ciphertext contains not
only the output wire label, but also P1’s authenticated BDOZ share of the
“correct” pointer bit. The BDOZ authentication ensures that P1 cannot cause
P2 to view pointer bits that are inconsistent with the secret pi values, without
aborting the protocol. Now as P2 evaluates the garbled circuit, it checks for
each gate that the visible pointer bit is authenticated by the associated MAC.

This protocol provided dramatic cost improvements. Wang et al. (2017b)
reports on experiments using authenticated garbling to execute malicious
secure protocols over both local and wide area networks. In a LAN setting, it
can execute over 800,000 AND gates per second and perform a single private
AES encryption in 16.6 ms (of which 0.93 ms is online cost) on a 10Gbps LAN
and 1.4 s on a WAN (77 ms is online cost). In a batched setting where 1024
AES encryptions are done, the amortized total cost per private encryption drops
to 6.66 ms (113 ms in a WAN). As a measure of the remarkable improvement
in MPC execution, the fastest AES execution as a semi-honest LAN protocol
in 2010 was 3300 ms total time (Henecka et al., 2010), so in a matter of eight
years the time required to execute a malicious secure protocol dropped to
approximately 1

200 that of the best semi-honest protocol!

6.8 Further Reading

Cut-and-choose existed as a folklore technique in the cryptographic literature.
Different cut-and-choosemechanisms were proposed byMohassel and Franklin
(2006) and Kiraz and Schoenmakers (2006), but without security proofs. The
first cut-and-choose protocol for 2PC with a complete security proof was due
to Lindell and Pinkas (2007).

We presented one technique from Lindell and Pinkas (2007) for dealing
with the selective abort attacks. The subtle nature of selective abort attacks was
first observed by Kiraz and Schoenmakers (2006), and fixed using a different
technique — in that work, by modifying the oblivious transfers into a variant
called committed OT.

We presented one technique for the problem of input consistency in cut-
and-choose (from shelat and Shen (2011)). Many other input-consistency
mechanisms have been proposed including Lindell and Pinkas (2007), Lindell
and Pinkas (2011), Mohassel and Riva (2013), and shelat and Shen (2013).

6.8. Further Reading 125

We described the BDOZ and SPDZ approaches to authenticated secret-
sharing. Other efficient approaches include Damgård and Zakarias (2013)
and Damgård et al. (2017). Various approaches for efficiently generating the
authenticated shares needed for the SPDZ approach are discussed by Keller
et al. (2016) and Keller et al. (2018).

The GMW paradigm transforms a semi-honest-secure protocol into a
malicious-secure one. However, it generally does not result in a protocol with
practical efficiency. This is due to the fact that it treats the semi-honest-secure
protocol in a non-black-box way — the parties must prove (in zero knowledge)
statements about the next-message function of the semi-honest-secure protocol,
which in the general case requires expressing that function as a circuit. Jarecki
and Shmatikov (2007) propose a malicious variant of Yao’s protocol that is
similar in spirit to the GMW paradigm, in the sense that the garbling party
proves correctness of each garbled gate (although at a cost of public-key
operations for each gate).

A black-box approach for transforming a semi-honest-secure protocol into
a malicious-secure one (Ishai et al., 2007; Ishai et al., 2008) is known as “MPC
in the head”. The idea is for the actual parties to imagine a protocol interaction
among “virtual” parties. Instead of running an MPC protocol for the desired
functionality, the actual parties run an MPC that realizes the behavior of the
virtual parties. However, the MPC that is used to simulate the virtual parties
can satisfy a weaker security notion (than what the overall MPC-in-the-head
approach achieves), and the protocol being run among the virtual parties needs
to be only semi-honest secure. For the special case of zero-knowledge proofs,
the MPC-in-the-head approach results in protocols that are among the most
efficient known (Giacomelli et al., 2016; Chase et al., 2017; Ames et al., 2017;
Katz et al., 2018).

7
Alternative Threat Models

In this chapter, we consider some different assumptions about threats that lead
to MPC protocols offering appealing security-performance trade-offs. First,
we relax the assumption that any number of participants may be dishonest and
discuss protocols designed to provide security only when a majority of the
participants behave honestly. Assuming an honest majority allows for dramatic
performance improvements. Then, we consider alternatives to the semi-honest
and malicious models that have become standard in MPC literature, while still
assuming that any number of participants may be corrupted. As discussed in
the previous chapter, semi-honest protocols can be elevated into the malicious
model, but this transformation incurs a significant cost overhead which may
not be acceptable in practice. At the same time, real applications present a
far more nuanced set of performance and security constraints. This prompted
research into security models that offer richer trade-offs between security and
performance. Section 7.1 discusses protocols designed to take advantage of the
assumption that the majority of participants are honest. Section 7.2 discusses
scenarios there trust between the participants is asymmetric, and the remaining
sections present protocols designed to provide attractive security-performance
trade-offs in settings motivated by practical scenarios.

126

7.1. Honest Majority 127

7.1 Honest Majority

So far we have considered security against adversaries who may corrupt any
number of the participants. Since the purpose of security is to protect the
honest parties, the worst-case scenario for a protocol is that n − 1 out of n
parties are corrupted.1 In the two-party case, it is indeed the only sensible
choice to consider one out of the two parties to be corrupt.

However, in the multi-party setting it often is reasonable to consider
restricted adversaries that cannot corrupt as many parties as they want. A
natural threshold is honest majority, where the adversary may corrupt strictly
less than n

2 of the n parties. One reason this threshold is natural is that, assuming
an honest majority, every function has an information-theoretically secure
protocol (Ben-Or et al., 1988; Chaum et al., 1988), while there exist functions
with no such protocol in the presence of dn/2e corrupt parties.

7.1.1 Building on Garbled Circuits

Yao’s protocol (Section 3.1) provides semi-honest security, but to make it
secure against malicious adversaries requires significant modifications with
high computation and communication overhead (Section 6.1).

Mohassel et al. (2015) propose a simple 3-party variant of Yao’s protocol
that is secure against a malicious adversary that corrupts at most one party
(that is, the protocol is secure assuming an honest majority). Recall that the
main challenge in making Yao’s protocol secure against malicious attacks is
to ensure that the garbled circuit is generated correctly. In the protocol of
Mohassel et al. (2015), the main idea is to let two parties P1,P2 play the role
of circuit garbler and one party P3 play the role of circuit evaluator. First, P1
and P2 agree on randomness to be used in garbling, then they both garble the
designated circuit with the same randomness, and send it to P3. Since at most
one of the garblers is corrupt (by the honest majority assumption), at least one
of the garblers is guaranteed to be honest. Therefore, P3 only needs to check
that both garblers send identical garbled circuits. This ensures that the (unique)

1We consider only static security, where the adversary’s choice of the corrupted parties
is made once-and-for-all, at the beginning of the interaction. It is also possible to consider
adaptive security, where parties can become corrupted throughout the protocol’s execution.
In the adpative setting, it does indeed make sense to consider scenarios where all parties are
(eventually) corrupted.

128 Alternative Threat Models

garbled circuit is generated correctly. Other protocol issues relevant for the
malicious case (like obtaining garbled inputs) are handled in a similar way, by
checking responses from the two garbling parties for consistency.

One additional advantage of the 3-party setting is that there is no need for
oblivious transfer (OT) as in the 2-party setting. Instead of using OT to deliver
garbled inputs to the evaluator P3, we can let P3 secret-share its input and send
one share (in the clear!) to each of P1 and P2. These garblers can send garbled
inputs for each of these shares, and the circuit can be modified to reconstruct
these shares before running the desired computation. Some care is required to
ensure that the garblers send the correct garbled inputs in this way (Mohassel
et al. (2015) provide details). Overall, the result is a protocol that avoids all
OT and thus uses only inexpensive symmetric-key cryptography.

The basic protocol of Mohassel et al. (2015) has been generalized to
provide additional properties like fairness (if the adversary learns the output,
then the honest parties do) and guaranteed output delivery (all honest parties
will receive output) (Patra and Ravi, 2018). Chandran et al. (2017) extend it to
provide security against roughly

√
n out of n corrupt parties.

7.1.2 Three-Party Secret Sharing

The honest-majority 3-party setting also enables some of the fastest general-
purpose MPC implementations to date. These protocols achieve their high
performance due to their extremely low communication costs — in some cases,
as little as one bit per gate of the circuit!

It is possible to securely realize any functionality information-theoretically
in the presence of an honest majority, using the classical protocols of Ben-Or
et al. (1988) and Chaum et al. (1988). In these protocols, every wire in the
circuit holds a value v, and the invariant of these protocols is that the parties
collectively hold some additive secret sharing of v. As in Section 3.4, let [v]
denote such a sharing of v. For an addition gate z = x + y, the parties can
compute a sharing [x + y] from sharings [x] and [y] by local computation only,
due to the additive homomorphism property of the sharing scheme. However,
interaction and communication are required for multiplication gates to compute
a sharing [xy] from sharings [x] and [y].

In Section 3.4 we discussed how to perform such multiplications when
pre-processed triples of the form [a], [b], [ab] are available. It is also possible

7.1. Honest Majority 129

to perform multiplications with all effort taking place during the protocol (i.e.,
not in a pre-processing phase). For example, the protocol of Ben-Or et al.
(1988) uses Shamir secret sharing for its sharings [v], and uses an interactive
multiplication subprotocol in which all parties generate shares-of-shares and
combine them linearly.

The protocols in this section are instances of this general paradigm, highly
specialized for the case of 3 parties and 1 corruption (“1-out-of-3” setting).
Both the method of sharing and the corresponding secure multiplication
subprotocol are the target of considerable optimizations.

The Sharemind protocol of Bogdanov et al. (2008a) was the first to
demonstrate high performance in this setting. Generally speaking, for the
1-out-of-3 case, it is possible to use a secret sharing scheme with threshold 2
(so that any 2 shares determine the secret). The Sharemind protocol instead
uses 3-out-of-3 additive sharing, so that in [v] party Pi holds value vi such that
v = v1 + v2 + v3 (in an appropriate ring, such as Z2 for Boolean circuits). This
choice leads to a simpler multiplication subprotocol in which each party sends
7 ring elements.

Launchbury et al. (2012) describe an alternative approach in which
each party sends only 3 ring elements per multiplication. Furthermore, the
communication is in a round-robin pattern, where the only communication is
in the directions P1 → P2 → P3 → P1. The idea behind multiplication is as
follows. Suppose two values x and y are additively shared as x = x1 + x2 + x3
and y = y1 + y2 + y3, where party Pi holds xi, yi. To multiply x and y, it
suffices to compute all terms of the form xa · yb for a, b ∈ {1, 2, 3}. Already Pi

has enough information to compute xiyi, but the other terms are problematic.
However, if each Pi sends its shares around the circle (i.e., P1 sends to P2, P2
sends to P3, and P3 to P1), then every term of the form xayb will computable
by some party. Each party will now hold two of the xi shares and two of the yi
shares. This still perfectly hides the values of x and y from a single corrupt
party since we are using 3-out-of-3 sharing. The only problem is that shares
of xy are correlated to shares of x and y, while it is necessary to have an
independent sharing of xy. So, the parties generate a random additive sharing
of zero and locally add it to their (non-random) sharing of xy.

Araki et al. (2016) propose a secret sharing scheme that is a variant of

130 Alternative Threat Models

replicated secret sharing. The sharing of a value v is defined as:

P1 holds (x1, x3 − v) P2 holds (x2, x1 − v) P3 holds (x3, x2 − v)

where the xi values are a random sharing of zero: 0 = x1+x2+x3. They describe
a multiplication subprotocol in which each party sends only one ring element
(in a round-robin fashion as above).2 One of the ways in which communication
is minimized in this approach is that the multiplication subprotocol generates
its needed randomness without any interaction. Suppose there are three keys,
k1, k2, k3, for a pseudorandom function where P1 holds (k1, k2), P2 holds
(k2, k3), and P3 holds (k3, k1). Then, the parties can non-interactively generate
an unbounded number of random sharings of zero. The i-th sharing of zero is
generated via:

• P1 computes s1 = Fk1(i) − Fk2(i)

• P2 computes s2 = Fk2(i) − Fk3(i)

• P3 computes s3 = Fk3(i) − Fk1(i)

Here F is a pseudorandom function whose output is in the field. As desired,
s1 + s2 + s3 = 0 and the sharing is indeed random from the perspective of a
single corrupt party. Such random sharings of zero are the only randomness
needed by the multiplication subprotocol of Araki et al. (2016).

As a result of such minimal communication, Araki et al. (2016) report
MPC performance of over 7 billion gates per second. This performance suffices
to replace a single Kerberos authentication server with 3 servers running MPC,
so that no single server ever sees user passwords, and is able to support loads
of 35,000 logins per second.

These results are secure against one semi-honest corrupt party. Furukawa
et al. (2017) extend the approach of Araki et al. (2016), and show how to
achieve security against one malicious party (for the case of Boolean circuits).
Their protocol follows the high-level approach described in Section 3.4, by
generating multiplication triples [a], [b], [ab]. These triples use the secret-
sharing technique of Araki et al. (2016). The starting point to generate such
triples is also the multiplication protocol of Araki et al. (2016). Here, an

2Their protocol works as long as the number 3 is invertible in the ring. In particular, it can
be used for Boolean arithmetic over Z2 as well as Z2k .

7.2. Asymmetric Trust 131

important property of this protocol is used: a single corrupt party cannot cause
the output of multiplication to be an invalid sharing, only a (valid) sharing of a
different value. Hence, the adversary can cause any triple generated in this way
to have the form [a], [b], [ab] or [a], [b], [ab] (since this idea only applies for
sharings of single bits). Starting with this observation, collections of triples
are used to “cross-check” each other and guarantee their correctness.

7.2 Asymmetric Trust

Although the standard models assume all parties are equally distrusting, many
realistic scenarios have asymmetric trust. For example, consider the setting
where one of the two participants of a computation is a well-known business,
such as a bank (denoted by P1), providing service to another, less trusted,
participant, bank’s customer, denoted by P2. It may be safe to assume that P1 is
unlikely to actively engage in cheating by deviating from the prescribed protocol.
Indeed, banks today enjoy full customer trust and operate on all customer
data in plaintext. Customers are willing to rely on established regulatory and
legal systems, as well as the long-term reputation of the bank, rather than on
cryptographic mechanisms, to protect their funds and transactions. Today, we
not only trust the bank to correctly perform requested transactions, but we also
trust that the bank will not misuse our data and will keep it in confidence.

However, there may be several reasons why a cautious customer who trusts
the bank’s intent may want to withhold certain private information and execute
transactions via MPC. One is the unintentional data release. As with any
organization, the bank may be a target of cyber attacks, and data stored by
the bank, including customer data, may simply be stolen. Having employed
MPC to safeguard the data eliminates this possibility, since the bank will not
have the sensitive data in the first place. Another reason might be the legally
mandated audits and summons of the data. As an organization, a bank may
have a presence in several jurisdictions with different rules on data retention,
release and reporting. Again, MPC will serve as a protection for unpredictable
future data releases.

Hence, given the existing trust to the bank it seems reasonable to employ
semi-honest model to protect the customer. However, having upgraded cus-
tomer privacy by moving from plaintext operation to semi-honest MPC (and
correspondingly placing the customer as a semi-honest player), we now actually

132 Alternative Threat Models

greatly compromised bank’s security. Indeed, where previously the customer
has been a passive participant simply providing the input to the transaction,
now the customer has opportunities to cheat within the semi-honest MPC
protocol. Given the relative ease of creating an account at a bank, and the
opportunity for financial gain by an improperly conducted financial transaction,
a bank’s customer is naturally incentivized to cheat.

This scenario suggests a hybrid model where one player is assumed to be
semi-honest and the other is assumed to be malicious. Luckily, Yao’s GC and
many of its natural variants are already secure against malicious evaluator!
Indeed, assuming the OT protocol used by P2 to obtain its input wires provides
security against a malicious evaluator, P2, the GC evaluator proceeds simply
by decrypting garbled tables in a single, pre-determined way. Any deviation by
the GC evaluator in the GC evaluation will simply result in a failure to obtain
an output label. This is a very convenient feature of Yao’s GC, which allows
for an order of magnitude or more cost savings in settings where the security
policy can assume a semi-honest generator (P1).

Server-aided secure computation is another noteworthy example of taking
advantage of asymmetric trust. The Salus system (Kamara et al., 2012)
considers a natural setting where one participant is a special external party
without input or output, whose goal is to assist the other parties in securely
evaluating the function on their inputs. The external party might be a cloud
service provider with larger computational resources at its disposal and,
importantly, sufficient status to be partially trusted by all the other participants.
For example, this player may be trusted to behave semi-honestly, while other
players may be assumed to be malicious. An important assumption made by
Kamara et al. (2012) is that the server does not collude with any of the other
players, even if the server is malicious. Substantial performance improvements
can be obtained by the Salus systems and subsequent work by taking advantage
of the asymmetric trust and the collusion restriction. For example, Kamara
et al. (2014) present a server-aided private set intersection protocol, which,
in the case of the semi-honest server, computes PSI of billion-element sets in
about 580 seconds while sending about 12.4 GB of data.

7.3. Covert Security 133

7.3 Covert Security

While reasonable in many settings, at times the above semi-honest/malicious
asymmetric trust model is insufficient for applications where P1 may have
incentives to cheat. Even for a mostly trusted bank, cheating is nevertheless a
real possibility, and bank customers and even external auditors have no tools to
ensure compliance. At the same time, moving fully into the malicious model
will incur a large performance penalty that may not be acceptable.

An effective practical approach may be to enable probabilistic checks on
the generator, as first proposed by Aumann and Lindell (2007). Their idea is to
allow the evaluator (P2) to challenge the generator (P1) at random to prove
that the garbled circuit was constructed correctly. If P1 is unable to prove this,
then P2 will know that P1 is cheating and will react accordingly. The guarantee
achieved is that a cheating player will be caught with a certain fixed probability
(e.g., ε = 1

2) known as the deterrence factor.
This simple and natural idea can be formalized in the definition in several

ways. First, it is essential that P1 cannot forge an invalid proof or elude or
withdraw from a validity proof challenge on a garbled circuit it produced. On
the other hand, we accept that if P2 did not challenge P1 on an improperly-
generated circuit, then P1 was not caught cheating, and can win (i.e., learn
something about P2’s private input or corrupt the function output). However,
various privacy guarantees with respect to P2’s input may be considered.
Aumann and Lindell (2007) propose three formulations:

1. Failed simulation. The idea is to allow the simulator (of the cheating
party) to fail sometimes. “Fail” means that its output distribution is not
indistinguishable from the real one. This corresponds to an event of
successful cheating. The model guarantees that the probability that the
adversary is caught cheating is at least ε times the probability that the
simulator fails.

One serious issue with the above definition is that it only requires that if
cheating occurred in the real execution, the cheater will be caught with
probability ε . The definition does not prevent the cheating player from
deciding when to cheat (implicitly) based on the honest player’s input.
In particular, P1 could attempt cheat only on the more valuable inputs
of P2 (e.g., natural protocols exist which allow P1 to attempt to cheat

134 Alternative Threat Models

only when P2’s first bit is 0).

2. Explicit cheat. This formulation introduces an explicit ability to cheat
to an ideal-model adversary (i.e., the simulator). This only slightly
complicates the definition, but allows us to naturally prescribe that
cheating in the ideal model can only occur independently of the other
players’ inputs. In the ideal model, the cheating player, upon sending
a cheat instruction to the trusted party, will obtain the honest players’
inputs. At the same time, the honest players in the ideal model will
output corruptedi (i.e., detect cheating by Pi) with probability ε , thus
requiring that the same happens in the real model.

Although this model is much more convincing, it has the drawback that
the malicious player is allowed to obtain inputs of the honest parties
even when cheating is detected. As Aumann and Lindell noted, “there is
less deterrence to not rob a bank if when you are caught you are allowed
to keep the stolen money.” (Aumann and Lindell, 2007)

3. Strong explicit cheat. This is the same as the explicit cheat formulation,
with the exception that the cheating ideal-model adversary is not allowed
to obtain the honest players’ inputs in the case where cheating is detected.

The first two (strictly weaker) models of Aumann and Lindell (2007) did
not gain significant popularity mainly because the much stronger third model
admits protocols of the same or very similar efficiency as the weaker ones. The
strong explicit cheat model became standard due to its simplicity, effectiveness
in deterrence, and the discovery of simple and efficient protocols that achieve
it. We present one such simple and efficient 2PC protocol next.

7.3.1 Covert Two-Party Protocol

Since the work of Aumann and Lindell (2007), significant progress in efficient
OT has produced several extremely efficient malicious OT protocols (Asharov
et al., 2015b; Keller et al., 2015), with the latter having overhead over the semi-
honest OT of only 5%. As a result, we don’t consider covert OT security, and
assume a maliciously-secure OT building block. It is important to remember,
however, that a maliciously-secure protocol does not guarantee the players
submit prescribed inputs. In particular, while malicious OT ensures correct

7.3. Covert Security 135

and private OT execution, deviating players can submit arbitrary OT inputs,
such as invalid wire labels.

Next, we overview the method of Aumann and Lindell (2007) for building
a covert 2PC protocol from Yao’s GC and malicious OT. For simplicity, we
assume deterrence factor of ε = 1

2 . It is straightforward to efficiently generalize
this for any non-negligible ε . First, we present the basic idea and point out
missing pieces, which we then address.

Core Protocol. Aumann and Lindell go along the lines of the cut-and-
choose approach and propose that P1 generates and sends to P2 two GCs.
The two garbled circuits Ĉ0 and Ĉ1 are generated from random seeds s0 and
s1 respectively by expanding them using a pseudo-random generator (PRG).
Upon receipt, P2 flips a coin b ∈ {0, 1} and asks P1 to open the circuit Ĉb
by providing sb. Because the GCs are constructed deterministically from a
seed via a PRG expansion, opening is achieved simply by sending the seed to
the verifier. This allows P2 to check the correctness of the generated garbled
circuit Ĉb by constructing the same garbled circuit from the provided seed, and
comparing it to the copy that was sent. This guarantees that a badly constructed
Ĉ will be detected with probability ε = 1

2 , which is needed to satisfy the strong
explicit cheat definition.

However, a malicious P1 can also perform OT-related attacks. For example,
P1 can flip the semantics of the labels on P2’s input wires, effectively silently
flipping P2’s input. Similarly, P1 can set both P2’s input wire labels to the
same value, effectively setting P2’s input to a fixed value. Another attack is
the selective abort attack discussed in Section 6.1, where one of the two OT
secrets is set to be a dummy random value, resulting in an selectively aborted
evaluation that allows P1 to learn a bit of P2’s input.

As a result, we must ensure that a OT input substitution by P1 is caught
at least with probability equal to the deterrence factor ε . Note that input
substitution by P2 is allowed as it simply corresponds to P2 choosing a different
MPC input, a behavior allowed by the security definition.

Next, we discuss defenses to these attacks.

Preventing OT Input Substitution and Selective Abort. The solution en-
hances the basic protocol described above to provide additional protections

136 Alternative Threat Models

against OT input substitution by P1. First, recall that the entire GC is generated
from a seed, which includes the input wire labels. Further, OT is run prior
to P2’s challenge being announced, so P1 will not be able to adjust its tactic
in response to the challenge and provide honest OT inputs in the challenge
execution and malicious OT inputs in the live execution. At the same time, OT
delivers only one of the two inputs to P2, and P2 cannot verify that the other
OT input was correctly submitted by P1, leaving open the possibility of the
selective abort attack, described above.

This is not satisfactory in the strong explicit cheat formulation, since this
model requires that if cheating is detected, the dishonest party cannot learn
anything about the honest player’s input. There are several ways to address this.
Aumann and Lindell suggest using the inputs XOR tree idea, which was earlier
proposed by Lindell and Pinkas (2007). The idea is to modify the circuit C
being computed and correspondingly change the semantics of P2’s input wires
as follows. Instead of each of P2’s input bit xi , the new circuit C′ will have σ
inputs x1

i , ..., xσi , which are random with the restriction that xi =
⊕

j∈{1..σ } x j
i .

For each xi of C, the new circuit C′ will start by xor-ing the σ inputs x1
i , ..., xσi

so as to recover xi inside the circuit. C′ then continues as the original C would
with the reconstructed inputs. The new circuit computes the same function,
but now P1 can only learn information if it is correctly guesses all of the σ
random x j

i values, an event occurring with statistically negligible probability.

Alternate Keys. We additionally mention the following mainly theoretical
attack discussed by Aumann and Lindell (2007) to underline the subtleties
of even seemingly simple MPC protocols. The issue is that an adversary can
construct (at least in theory) a garbled circuit with two sets of keys, where
one set of keys decrypts the circuit to the specified one and another set of
keys decrypts the circuit to an incorrect one. This is not a real issue in most
natural GC constructions, but one can construct a tailored GC protocol with this
property. The existence of two sets of keys is problematic because the adversary
can supply “correct keys” to the circuits that are opened and “incorrect keys”
to the circuit that is evaluated. Aumann and Lindell prevent this by having
P1 commit to these keys and send the commitments together with the garbled
circuits. Then, instead of P1 just sending the keys associated with its input, it
sends the appropriate decommitments.

7.4. Publicly Verifiable Covert (PVC) Security 137

Protocol Completion. Finally, to conclude the informal description of the
protocol, after P2 successfully conducts the above checks, it proceeds by
evaluating Ĉ1−b and obtaining the output which is then also sent to P1. It now
can be shown that malicious behavior of P1 can be caught with probability
ε = 1

2 . We note that this probability can be increased simply by having P1
generate and send more circuits, all but one of which are opened and checked.
Aumann and Lindell (2007) provide a detailed treatment of the definitions and
the formal protocol construction.

7.4 Publicly Verifiable Covert (PVC) Security

In the covert security model, a party can deviate arbitrarily from the protocol
description but is caught with a fixed probability ε , called the deterrence
factor. In many practical scenarios, this guaranteed risk of being caught (likely
resulting in loss of business or embarrassment) is sufficient to deter would-be
cheaters, and covert protocols are much more efficient and simpler than their
malicious counterparts.

At the same time, the cheating deterrent introduced by the covert model is
relatively weak. Indeed, an honest party catching a cheater certainly knows
what happened and can respond accordingly (e.g., by taking their business
elsewhere). However, the impact is largely limited to this, since the honest
player cannot credibly accuse the cheater publicly. Doing so might require the
honest player to reveal its private inputs (hence, violate its security), or the
protocol may simply not authenticate messages as coming from a specific party.
If, however, credible public accusation (i.e., a publicly-verifiable cryptographic
proof of the cheating) were possible, the deterrent for the cheater would be
much greater: suddenly, all the cheater’s customers and regulators would be
aware of the cheating and thus any cheating may affect the cheater’s global
customer base.

The addition of credible accusation greatly improves the covert model
even in scenarios with a small number of players, such as those involving the
government. Consider, for example, the setting where two agencies are engaged
in secure computation on their respective classified data. The covert model
may often be insufficient here. Indeed, consider the case where one of the
two players deviates from the protocol, perhaps due to an insider attack. The
honest player detects this, but non-participants are now faced with the problem

138 Alternative Threat Models

of identifying the culprit across two domains, where the communication is
greatly restricted due to trust, policy, data privacy legislation, or all of the
above. On the other hand, credible accusation immediately provides the ability
to exclude the honest player from the suspect list, and focus on tracking the
problem within the misbehaving organization, which is dramatically simpler.

PVC Definition. Asharov and Orlandi (2012) proposed a security model,
covert with public verifiability, and an associated protocol, motivated by these
concerns. At a high level, they proposed that when cheating is detected, the
honest player can publish a “certificate of cheating” that can be checked by any
third party. We will call this model PVC, following the notation of Kolesnikov
and Malozemoff (2015), who proposed an improved protocol in this model.

Informally, the PVC definition requires the following three properties to
hold with overwhelming probability:

1. Whenever cheating is detected, the honest party can produce a publicly
verifiable proof of cheating.

2. Proof of cheating cannot be forged. That is, an honest player cannot be
accused of cheating with a proof that verifies.

3. Proof of cheating does not reveal honest party’s private data (including
the data used in the execution where cheating occurred).

Asharov-Orlandi PVC Protocol. The Asharov-Orlandi protocol has perfor-
mance similar to the original covert protocol of Aumann and Lindell (2007) on
which it is based, with the exception of requiring signed-OT, a special form of
oblivious transfer (OT). Their signed-OT construction, which we summarize
next, is based on the OT of Peikert et al. (2008), and thus requires several
expensive public-key operations per OT instance. After this, we describe sev-
eral performance improvements to it proposed by Kolesnikov and Malozemoff
(2015), the most important of which is a novel signed-OT extension protocol
that eliminates per-instance public-key operations.

As usual, we make P1 the circuit generator, P2 the evaluator, and use C to
represent the circuit to execute. Recall from Section 7.2 that in the standard
Yao’s garbled circuit construction in the semi-honest model, a malicious
evaluator (P2) cannot cheat during the GC evaluation. Hence, this protection

7.4. Publicly Verifiable Covert (PVC) Security 139

comes for free with natural GC protocols, and we only need to consider a
malicious generator (P1).

Recall the selective failure attack on P2’s input wires, where P1 sends P2
(via OT) an invalid wire label for one of P2’s two possible inputs and learns
which input bit P2 selected based on whether or not P2 aborts. To protect
against this attack, the parties construct a new circuit C′ that prepends an input
XOR tree in C as discussed in Section 7.3. To elevate to the covert model, P1
then constructs λ (the GC replication factor) garblings of C′ and P2 randomly
selects λ − 1 of them and checks they are correctly constructed, and evaluates
the remaining C′ garbled circuit to derive the output.

We now adapt this protocol to the PVC setting by allowing P2 to not only
detect cheating, but also to obtain a publicly verifiable proof of cheating if
cheating is detected. The basic idea is to require the generator P1 to establish
a public-private keypair, and to sign the messages it sends. The intent is
that signed inconsistent messages (e.g., badly formed GCs) can be published
and will serve as a convincing proof of cheating. The main difficulty of this
approach is ensuring that neither party can improve its odds by selectively
aborting. For example, if P1 could abort whenever P2’s challenge would reveal
that P1 is cheating (and hence avoid sending a signed inconsistent transcript),
this would enable P1 to cheat without the risk of generating a proof of cheating.

Asharov and Orlandi address this by preventing P1 from knowing P2’s
challenge when producing the response. In their protocol, P1 sends the GCs to
P2 and opens the checked circuits by responding to the challenge through a
1-out-of-λ OT. For this, P1 first sends all (signed) GCs to P2. Then the players
run OT, where in the i-th input to the OT P1 provides openings (seeds) for all
the GCs except for the i-th, as well as the input wire labels needed to evaluate
Ĉi. Party P2 inputs a random γ ∈R [λ], so receives the seeds for all circuits
other than Ĉγ from the OT and the wire labels for its input for Ĉγ. Then, P2
checks that all GCs besides Ĉγ are constructed correctly; if the check passes,
P2 evaluates Ĉγ. Thus, P1 does not know which GC is being evaluated, and
which ones are checked.

However, a more careful examination shows that this actually does not
quite get us to the PVC goal. Indeed, a malicious P1 simply can include invalid
openings for the OT secrets which correspond to the undesirable choice of
the challenge γ. The Asharov-Orlandi protocol addresses this by having P1

140 Alternative Threat Models

sign all its messages as well as using a signed-OT in place of all standard OTs
(including wire label transfers and GC openings). Informally, the signed-OT
functionality proceeds as follows. Rather than the receiver R getting message
mb (which might include a signature that S produced) from the sender S
for choice bit b, the signature component of signed-OT is explicit in the OT
definition. Namely, we require that R receives ((b,mb),Sig), where Sig is S’s
valid signature of (b,mb). This guarantees that R will always receive a valid
signature on the OT output it receives. Thus, if R’s challenge detects cheating,
the (inconsistent) transcript will be signed by S, so can be used as proof
of this cheating. Asharov and Orlandi (2012) show that this construction is
ε-PVC-secure for ε = (1 − 1/λ)(1 − 2−ν+1), where ν is the replication factor
of the employed XOR tree, discussed above.

We note that their signed-OT heavily relies on public-key operations, and
cannot use the much more efficient OT extension.

Signed-OT Extension. Kolesnikov and Malozemoff (2015) proposed an
efficient signed-OT extension protocol built on the malicious OT extension
of Asharov et al. (2015b). Informally, signed-OT extension (similarly to the
signed-OT of Asharov-Orlandi) ensures that (1) a cheating sender S is held
accountable in the form of a “certificate of cheating” that the honest receiver
R can generate, (2) the certificate of cheating does not reveal honest player’s
inputs and, (3) a malicious R cannot defame an honest S by fabricating a false
“certificate of cheating”.

Achieving the first goal is fairly straightforward and can be done by having
S simply sign all its messages sent in the course of executing OT extension.
Then, the view of R, which will now include messages signed by S, will
exhibit inconsistency. The challenge is in simultaneously:

1. protecting the privacy of R’s input—this is a concern since the view of
R exhibiting inconsistency also may include R’s input, and

2. preventing a malicious R from manipulating the part of the view which
is not under S’s signature to generate a false accusation of cheating.

Since the view of R plays the role of the proof of cheating, we must ensure
certain non-malleability of the view of R, to prevent it from defaming the
honest S. For this, we need to commit R to its particular choices throughout

7.5. Reducing Communication in Cut-and-Choose Protocols 141

the OT extension protocol. At the same time, we must maintain that those
commitments do not leak any information about R’s choices. Next, we sketch
how this can be done, assuming familiarity with the details of the OT extension
of Ishai et al. (2003) (IKNP from Section 3.7.2).

Recall that in the standard IKNP OT extension protocol, R constructs a
random matrix M, and S obtains a matrix M ′ derived from the matrix M,
S’s random string s, and R’s vector of OT inputs r. The matrix M is the
main component of R’s view which, together with S’s signed messages will
constitute a proof of cheating.

To reiterate, we must address two issues. First, because M ′ is obtained
by applying R’s private input r to M, and M ′ is known to S, M is now
sensitive and cannot be revealed. Second, we must prevent R from publishing
a doctored M, which would enable a false cheating accusation. Kolesnikov
and Malozemoff (2015) (KM) resolve both issues by observing that S does in
fact learn some of the elements of M , since in the OT extension construction
some of the columns of M and M ′ are the same (i.e., those corresponding to
zero bits of S’s string s).

The KM signed-OT construction prevents R from cheating by having S
include in its signature carefully selected information from the columns in M
which S sees. Finally, the protocol requires that R generate each row of M
from a seed, and that R’s proof of cheating includes this seed such that the row
rebuilt from the seed is consistent with the columns included in S’s signature.
Kolesnikov and Malozemoff (2015) show that this makes it infeasible for R to
successfully present an invalid row of the OT matrix in the proof of cheating.
The KM construction is in the random oracle model, a slight strengthening of
the assumptions needed for standard OT extension and FreeXOR, two standard
secure computation tools.

The KM construction is also interesting from a theoretical perspective in
that it shows how to construct signed-OT from any maliciously secure OT
protocol, whereas Asharov and Orlandi (2012) build a specific construction
based on the Decisional Diffie-Hellman problem.

7.5 Reducing Communication in Cut-and-Choose Protocols

A basic technique in cut-and-choose used to achieve malicious-level security,
and in the covert and PVC models, is for P1 to send several garbled circuits,

142 Alternative Threat Models

of which several are opened and checked, and one (or more for malicious
security) is evaluated. The opened garbled circuits have no further use, since
they hold no secrets. They only serve as a commitment for purposes of the
challenge protocol. Can commitments to these GCs be sent and verified instead,
achieving the same utility?

Indeed, as formalized by Goyal et al. (2008), this is possible in covert and
malicious cut-and-choose protocols. One must, of course, be careful with the
exact construction. One suitable construction is provided by Goyal et al. (2008).
Kolesnikov and Malozemoff (2015) formalize a specific variant of hashing,
which works with their PVC protocol, thus resulting of the PVC protocol being
of the same communication cost as the semi-honest Yao’s GC protocol.

Free Hash. While GC hashing allows for significant communication savings,
it may not provide much overall savings in total execution time since hashing is
a relatively expensive operation. Motivated by this, Fan et al. (2017) proposed
a way to compute a GC hash simply by xor-ing (slightly malleated) entries of
garbled tables. Their main idea is to greatly weaken the security definition of
the GC hash. Instead of requiring that it is infeasible to find a hash collision,
they allow an adversary to generate a garbled circuit Ĉ′ whose hash collides
with an honestly generated Ĉ, as long as such a Ĉ′ with high probability will
fail evaluation and cheating will be discovered. Fan et al. (2017) then show
how to intertwine hash generation and verification with GC generation and
evaluation, such that the resulting hash is generated at no extra computational
cost and meets the above definition.

7.6 Trading Off Leakage for Efficiency

Maliciously secure MPC provides extremely strong security guarantees, at
a cost. In many cases, the security needs may allow for less than absolute
inability of a malicious attacker to learn even a single bit of information. At
the same time, a large majority of the cost of MPC comes from the “last mile”
of entirely protecting all private information. Given this, useful trade-offs
between MPC security and efficiency have been explored. In this section we
discuss the dual-execution approach of Mohassel and Franklin (2006), as well
as several private database systems.

7.6. Trading Off Leakage for Efficiency 143

Dual Execution. The dual-execution 2PC protocol of Mohassel and Franklin
(2006) capitalizes on the fact that only the circuit generator is able to cheat
in 2PC GC, assuming malicious-secure OT. Indeed, the evaluator simply
performs a sequence of decryptions, and deviation of the prescribed protocol
results in the evaluator being stuck, which is equivalent to abort. The idea
behind dual execution is to allow both players to play a role of the generator
(hence forcing the opponent to play the role of the evaluator where it will
not be able to cheat). As a result, in each honest player’s view, the execution
where it was the generator must be the correct one. However, the honest player
additionally must ensure that the other execution is not detrimental to security,
for example, by leaking private data.

To achieve this, Mohassel and Franklin (2006) propose that the two
executions must produce the same candidate output—a difference in candidate
outputs in the two executions implies cheating, and the computation must be
aborted without output to avoid leaking information from an invalid circuit. In
the protocol, the two parties run two separate instances of Yao’s semi-honest
protocol, so that for one instance P1 is the generator and P2 is the evaluator,
and for the other instance P2 is the generator and P1 is the evaluator. Each party
evaluates the garbled circuit they received to obtain a (still garbled) output.
Then the two parties run a fully maliciously secure equality test protocol to
check whether their outputs are semantically equal (before they are decoded).
Each party inputs both the garbled output they evaluated and the output wire
labels of the garbled circuit they generated. If the outputs don’t match, then the
parties abort. Of course, abort is an exception, and the aborting honest party
will know that that other player cheated in the execution. While this equality
check subprotocol is evaluated using a malicious-secure protocol, its cost is
small since the computed comparison function is fixed and only depends on
the size of the output.

The dual-execution protocol is not fully secure in the malicious model.
Indeed, the honest party executes an adversarially-crafted garbled circuit and
uses the garbled output in the equality-test subprotocol. A malicious party
can generate a garbled circuit that produces the correct output for some of the
other party’s inputs, but an incorrect one for others. Then, the attacker learns
whether the true function output is equal to an arbitrary predicate on honest
party input by observing the abort behavior of the protocol. However, since the

144 Alternative Threat Models

equality test has only one bit of output, it can be shown that the dual-execution
protocol leaks at most one (adversarially-chosen) bit describing the honest
party’s input.

In a follow-up work, Huang et al. (2012b) formalize the dual-execution
definition of Mohassel and Franklin and propose several optimizations in-
cluding showing how the two executions can be interleaved to minimize the
overall latency of dual execution overhead over semi-honest single execution.
In another follow-up work, Kolesnikov et al. (2015) show how the leakage
function of the dual-execution 2PC can be greatly restricted and the probability
of leakage occurring reduced.

Memory Access Leakage: Private DB Querying. Another strategy for
trading-off some leakage for substantial efficiency gains is to incorporate
custom protocols into an MPC protocol that leak some information for large
performance gains. This can be particularly effective (and important) for
applications involving large-scale data analysis. Large-scale data collection
and use has become essential to operation of many fields, such as security,
analysis, optimization, and others. Much of the data collected and analyzed is
private. As a result, a natural question arises regarding the feasibility of MPC
application to today’s data sets.

One particular application of interest is private database querying. The goal
is to enable a database server (DB) to respond to client’s encrypted queries, so
as to protect the sensitive information possibly contained in the query. Private
queries is a special case of MPC, and can be instantiated by using generic
MPC techniques.

One immediate constraint, critical to our discussion is the necessity of
sublinear data access. A fully secure approach would involve scanning the
entire DB for a single query to achieve semi-honest security. This is because
omitting even a single DB entry reveals to the players that this entry was not
in the result set. Sublinear execution immediately implies loss of security of
MPC even in the semi-honest model. However, as covered in Chapter 5, when
linear-time preprocessing is allowed, amortized costs of data access can be
sublinear while achieving full formal cryptographic guarantees.

Known algorithms for fully secure sublinear access, however, are still
very expensive, bringing 3–4 orders of magnitude performance penalties.

7.7. Further Reading 145

A promising research direction looks into allowing certain (hopefully, well-
understood) leakage of information about private inputs in the pursuit of
increased efficiency in protocols for large-scale data search.

Several systems designed to provide encrypted database functionalities
use MPC as an underlying technology (Pappas et al., 2014; Poddar et al.,
2016). In the Blind Seer project (Pappas et al., 2014; Fisch et al., 2015), two-
and three-party MPC was used as an underlying primitive for implementing
encrypted search tree traversal, performed jointly by the client and the server.

Both areas are active research areas, and several commercial systems are
deployed that provide searchable encryption and encrypted databases. We note
that today we don’t have precise understanding of the impact of the leaked
information (or the information contained in the authorized query results sets,
for that matter). Several attacks have shown that data leaked for the sake of
efficiency can often be exploited (Islam et al., 2012; Naveed et al., 2015;
Cash et al., 2015). Understanding how to make appropriate trade-offs between
leakage and efficiency remains an important open problem, but one that many
practical systems must face.

7.7 Further Reading

MPC today is already fast enough to be applied to many practical problems,
yet larger-scale MPC applications are often still impractical, especially in
the fully-malicious model. In this chapter, we discussed several approaches
that aim to strike a balance between security and performance. Reducing the
adversary power (i.e., moving from malicious to covert and PVC models)
enables approximately a factor of 10 cost reduction compared to authenticated
garbling (Section 6.7) and a factor of 40 compared to the best cut-and-choose
methods (Section 6.1). Allowing for additional information to be revealed
promises even more significant performance improvements, up to several
orders of magnitude in some cases (as seen in the private database work in
Section 7.6). Of course, it is important to understand the effect of the additional
leakage. We stress, however, that there is no fundamental difference in the extra
leakage during the protocol execution, and the allowed information obtained
from the output of the computation. Both can be too damaging and both should
be similarly analyzed to understand if (securely) computing the proposed
function is safe.

146 Alternative Threat Models

Another approach that can produce dramatic performance improvements is
employing secure hardware such as Intel SGXor secure smartcards (Ohrimenko
et al., 2016; Gupta et al., 2016; Bahmani et al., 2017; Zheng et al., 2017).
This offers a different kind of a trade-off: should we trust the manufacturer
of the hardware (we must consider both competence and possible prior or
future malicious intent) to greatly improve performance of secure computing?
There is no clear answer here, as hardware security seems to be a cat-and-
mouse game, with significant attacks steadily appearing, and manufacturers
catching up in their revisions cycle. Examples of recent attacks on SGX include
devastating software-only key recovery (Bulck et al., 2018), which does not
make any assumption on victim’s enclave code and does not necessarily require
kernel-level access. Other attacks include exploits of software vulnerabilities,
e.g., (Lee et al., 2017a), or side channels, e.g., (Xu et al., 2015; Lee et al.,
2017b). Ultimately, delivering high-performance in a CPU requires very
complex software and hardware designs, which are therefore likely to include
subtle errors and vulnerabilities. Secure enclaves present an attractive and
high-value attack target, while their vulnerabilities hard to detect in the design
cycle. As such, they may be suitable for computing on lower-value data in larger
instances where MPC is too slow, but not where high assurance is needed.

Theoretical cryptography explored hardware security from a formal per-
spective, with the goal of achieving an ideal leak-free hardware implementation
of cryptographic primitives. The motivation for this work is today’s extensive
capabilities to learn hardware-protected secrets by observing the many side
channels of hardware computation including power consumption, timing,
electromagnetic radiation, and acoustic noise. Leakage-resilient cryptography
was a very popular research direction in late-2000’s, whose intensity since
subsided. Works in this area typically assumed either a small secure component
in hardware (small in chip area and computing only a minimal functionality,
such as a pseudorandom function), or that leakage collected by an adversarial
observer at any one time slice/epoch is a priori bounded. The goal was then to
build provably-secure (i.e., leakage-free) hardware for computing a specific
function based on these assumptions. A foundational paper by Micali and
Reyzin (2004) introduced the notion of physically observable cryptography and
proposed an influential theoretical framework to model side-channel attacks.
In particular, they state and motivate the “only computation leaks information”

7.7. Further Reading 147

axiom used in much of leakage-resilient cryptography work. Juma and Vahlis
(2010) show how to compute any function in a leak-free manner by using
fully-homomorphic encryption and a single “leak-free” hardware token that
samples from a distribution that does not depend on the protected key or the
function that is evaluated on it. A corresponding line of research in the more
practical hardware space acknowledges that real-world leakage functions are
much stronger and more complex than what is often assumed by theoretical
cryptography. In this line of work, heuristic, experimental and mitigation
approaches are typical. Several MPC works have also taken advantage of
(assumed) secure hardware tokens computing basic functions, such as PRF.
Goals here include eliminating assumptions (e.g., Katz (2007) and Goyal et al.
(2010)) or improving performance (Kolesnikov, 2010).

8
Conclusion

In the past decade or so, MPC made dramatic strides, developing from
a theoretical curiosity to a versatile tool for building privacy-preserving
applications. For most uses, the key metric is cost, and the cost of deploying
MPC has declined by 3–9 orders of magnitude in the past decade.

The first reported 2PC system, Fairplay (Malkhi et al., 2004), executed a
4383-gate circuit in the semi-honest model, taking over 7 seconds on a local
area network at a rate of about 625 gates per second. Modern 2PC frameworks
can execute about 3 million gates per second on a 1Gbps LAN, and scale to
circuits with hundreds of billions of gates.

Cost improvements for malicious secure MPC have been even more
dramatic. The first substantial attempt to implement malicious secure generic
MPC was Lindell et al. (2008), intriguingly titled “Implementing Two-Party
Computation Efficiently with Security Against Malicious Adversaries”. It
reports malicious evaluation of the 16-bit comparison circuit, consisting of
fifteen 3-to-1 gates and one 2-to-1 gate, in between 135 to 362 seconds
depending on the security parameter settings. This evaluation rate corresponds
to about 0.13 gates per second. An implementation of the authenticated garbling
scheme (Section 6.7) reports malicious security 2PC at over 0.8 million gates
per second on a 10Gbps LAN (Wang et al., 2017b). This corresponds to over a

148

149

6 million factor performance improvement in under a decade! With honest-
majority malicious 3PC the performance that can be achieved is even more
remarkable (Section 7.1.2). Araki et al. (2017) report a 3-machine 20-core
cluster that can evaluate a billion gates per second over a 10Gbps channel.

It is fair to say that the progress in the field of applied MPC is truly
astounding, and things that would have been considered impossible a few years
ago, and now considered routine.

Despite this progress, and many emerging real world uses, MPC is not yet
widespread in practice. There remain several challenges to overcome before
MPC can be deployed for a wide range of privacy-preserving applications. We
discuss a few, and possible approaches for overcoming them next.

Cost. Despite dramatic advances in the 2PC and MPC technology in the past
decade, secure function evaluation still may incur several orders of magnitude
cost penalty over standard (non-private) execution, especially when protecting
against malicious players. The exact overhead varies greatly from virtually
non-existent to unacceptable, and mostly depends on the computed function.

In particular, for generic MPC, the protocols described in this book (which
are, arguably, the ones that are most scalable today in typical settings) all
require bandwidth that scales linearly in the size of the circuit. Bandwidth
within a data center is inexpensive (indeed, many cloud providers do not charge
customers anything for bandwidth between nodes within the same data center),
but it requires a strong trust model to assume all participants in an MPC
would be willing to outsource their computation to the same cloud provider.
In some use cases, this linear bandwidth cost may be prohibitively expensive.
Making bandwidth cost sublinear in circuit size requires a very different
paradigm. Although it has been shown to be possible with threshold-based
FHE schemes (Asharov et al., 2012), such schemes are a long way from being
practical. Recent results have shown that function-sharing schemes can be used
to build lower-bandwidth MPC protocols for certain classes of functions (Boyle
et al., 2016a; Boyle et al., 2018).

The solution to this bandwidth cost seems to require hybrid protocols that
combining MPC with custom protocols or homomorphic encryption to enable
secure computation without linear bandwidth cost. We have covered several
approaches that incorporate these strategies in MPC including private set

150 Conclusion

intersection (Section 3.8.1), RAM-MPC (Chapter 5) and ABY (Section 4.3),
but the limits of this approach are not known. Custom protocols can offer
much lower costs, but developing custom protocols is tedious and only cost-
effective for the most important and performance-critical operations. Future
work may find more principled and automated was to combine generic MPC
with homomorphic encryption and custom protocols to enable very efficient
solutions without compromising security properties.

Another direction for dramatically reducing the cost of MPC is to employ
secure hardware such as Intel’s SGX. This assumes a somewhat awkward (but
often realistic in practice) threat model where a vendor is trusted to implement
a secure enclave and manage its keys, but not trusted fully to be an trusted
third party. Signal recently released a private contact discovery service using
SGX (Marlinspike, 2017), and many researchers are pursuing MPC designs
that take advantage of SGX (Bahmani et al., 2017; Shaon et al., 2017; Priebe
et al., 2018; Mishra et al., 2018).

Leakage trade-offs. Clearly, the MPC performance race will continue,
although specific improvement areas may shift. For example, we have already
achieved several MPC milestones, such as being able to fully utilize a very
capable 10Gbps communication channel. Further, there exist several barriers
for algorithmic performance improvement, such as the need for two ciphertexts
for AND gate encryption, shown by Zahur et al. (2015). This may limit expected
performance gains in basic generic Yao-based MPC.

Indicative of the recognition of these barriers and the data processing de-
mands, a line of work emerged addressing the trade-off betweenMPC efficiency
and achieved security guarantees, which we partially covered in Chapter 7.
Another possible direction for leakage trade-offs is within the core protocols,
where large efficiency gains may be achieved by giving up the strong secu-
rity guarantees targeted by current protocols for more flexible information
disclosure limits.

In terms of which MPC operation is in most need of improvement,
achieving secure access to random memory locations stands out. Despite
all the improvements described in Chapter 5, today’s ORAM protocols are
still concretely inefficient and are the main limit in scaling MPC to large
data applications. An alternative to ORAM, in the absence of a satisfactory

151

fully secure solution, could be security-aware leakage of data access patterns,
accompanied by a formal analysis of how this information satisfies security
and privacy requirements. It is plausible that in many scenarios it can be
formally shown, e.g., using tools from programming languages among others,
that revealing some information about the access pattern is acceptable.

Output leakage. The goal of MPC is to protect the privacy of inputs and
intermediate results, but at the end of the protocol the output of the function is
revealed. A separate research field has developed around the complementary
problem where there is no need to protect the input data, but the output must
be controlled to limit what an adversary can infer about the private data from
the output. The dominant model for controlling output leakage is differential
privacy (Dwork and Roth, 2014) which adds privacy-preserving noise to
outputs before they are revealed. A few works have explored combining MPC
with differential privacy to provide end-to-end privacy for computations with
distributed data (Pettai and Laud, 2015; Kairouz et al., 2015; He et al., 2017),
but this area is in its infancy and many challenging problems need to be solved
before the impacts of different types of leakage are well understood.

Meaningful trust. When cryptographers analyze protocols, they assume
each party has a way to executed their part of the protocol that they fully
trust. In reality, protocols are executed by complex software and hardware,
incorporating thousands of components provided by different vendors and
programmers. The malicious secure protocols we discussed in this book
provide a user with strong guarantees that if their own system executes its role
in the protocol correctly, no matter what the other participants do the security
guarantees are established. But, in order to fully trust an MPC application,
a user also needs to fully trust that the system executing the protocol on its
behalf, which is given full access to their private data in cleartext, will execute
the protocol correctly. This includes issues like ensuring the implementation
has no side channels that might leak the user’s data, as well as knowing that it
performs all protocol steps correctly and does not attempt to leak the user’s
private input.

Providing full confidence in a computing system is a longstanding and
challenging problem that applies to all secure uses of computing, but is

152 Conclusion

particularly sharp in considering the security of MPC protocols. In many
deployments, all participants end up running the same software, provided by a
single trusted party, and without any auditing. In practice, this provides better
security that just giving all the data to the software provider; but in theory, it is
little different from just handing over all the plaintext data to the software (or
hardware) provider.

One appealing aspect of MPC techniques is they can be used to alleviate
the need to place any trust in a computing system—if private data is split into
shares and computed on using two systems using MPC, the user no longer
needs to worry about implementation bugs in either systems exposing the
data since the MPC protocol ensures that, regardless of the type of bug in the
system even including hardware side channels, there is no risk of data exposure
since the private data is always protected by cryptography withing the MPC
protocol and is not visible to the system at all.

Finding ways to meaningfully convey to end users how their data will be
exposed, andwhat they are trusting in providing it, is amajor challenge for future
computing systems. Making progress on this is essential for enabling privacy-
enhancing technologies like MPC to provide meaningful and understandable
benefits to the vast majority of computing users, rather than just to sophisticated
organizations with teams of cryptographers and program analysts.

We wish to conclude this book on an optimistic note. The awareness
that personal data can be compromised in a data breach, or can be abused
by companies whose interests do not align with those of their users, is
increasing. New regulations, including the European Union’s General Data
Protection Regulation, are making holding personal data a liability risk for
companies. MPC has emerged as a powerful and versatile primitive that can
provide organizations and individuals with a range of options for designing
privacy-preserving applications.Many challenges remain, butMPC (and secure
computation broadly) is a young and vibrant field, with much opportunity to
create, develop and apply.

Acknowledgements

The authors thank Jeanette Wing for instigating this project; our editors at Now
Publishers, James Finlay and Mike Casey, for help and flexibility throughout
the writing process; and Alet Heezemans for help with the final editing. We
thank Patricia Thaine for particularly helpful comments and corrections, and
Weiran Liu and Shengchao Ding for their work on a Chinese translation and
the detailed suggestions and corrections resulting from that effort.

Vladimir Kolesnikov was supported in part by Sandia National Laboratories,
a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.

Mike Rosulek was supported in part by the National Science Foundation
(award #1617197), a Google Research award, and a Visa Research award.

David Evans was supported in part by National Science Foundation awards
#1717950 and #1111781, and research awards fromGoogle, Intel, andAmazon.

153

References

Afshar, A., Z. Hu, P. Mohassel, and M. Rosulek. 2015. “How to Efficiently
Evaluate RAM Programs with Malicious Security”. In: Advances in
Cryptology – EUROCRYPT 2015, Part I. Ed. by E. Oswald andM. Fischlin.
Vol. 9056. Lecture Notes in Computer Science. Springer, Heidelberg. 702–
729. doi: 10.1007/978-3-662-46800-5_27.

Aly, A., M. Keller, E. Orsini, D. Rotaru, P. Scholl, N. Smart, and T.Wood. 2018.
“SCALE and MAMBA Documentation”. https://homes.esat.kuleuven.be/
~nsmart/SCALE/Documentation.pdf.

Ames, S., C. Hazay, Y. Ishai, and M. Venkitasubramaniam. 2017. “Ligero:
Lightweight Sublinear Arguments Without a Trusted Setup”. In: ACM
CCS 17: 24th Conference on Computer and Communications Security.
Ed. by B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM Press.
2087–2104.

Araki, T., A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A.
Watzman, and O. Weinstein. 2017. “Optimized Honest-Majority MPC for
Malicious Adversaries - Breaking the 1 Billion-Gate Per Second Barrier”.
In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press. 843–862.

154

https://doi.org/10.1007/978-3-662-46800-5_27
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf

References 155

Araki, T., J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. 2016. “High-
Throughput Semi-Honest Secure Three-Party Computation with an Honest
Majority”. In: ACM CCS 16: 23rd Conference on Computer and Com-
munications Security. Ed. by E. R. Weippl, S. Katzenbeisser, C. Kruegel,
A. C. Myers, and S. Halevi. ACM Press. 805–817.

Asharov, G., A. Beimel, N. Makriyannis, and E. Omri. 2015a. “Complete
Characterization of Fairness in Secure Two-Party Computation of Boolean
Functions”. In: TCC 2015: 12th Theory of Cryptography Conference,
Part I. Ed. by Y. Dodis and J. B. Nielsen. Vol. 9014. Lecture Notes in
Computer Science. Springer, Heidelberg. 199–228. doi: 10.1007/978-3-
662-46494-6_10.

Asharov, G., A. Jain, A. López-Alt, E. Tromer, V.Vaikuntanathan, andD.Wichs.
2012. “Multiparty computation with low communication, computation
and interaction via threshold FHE”. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EuroCrypt).
Springer. 483–501.

Asharov, G., Y. Lindell, T. Schneider, and M. Zohner. 2015b. “More Efficient
Oblivious Transfer Extensions with Security for Malicious Adversaries”.
In: Advances in Cryptology – EUROCRYPT 2015, Part I. Ed. by E. Oswald
and M. Fischlin. Vol. 9056. Lecture Notes in Computer Science. Springer,
Heidelberg. 673–701. doi: 10.1007/978-3-662-46800-5_26.

Asharov, G. and C. Orlandi. 2012. “Calling Out Cheaters: Covert Security
with Public Verifiability”. In: Advances in Cryptology – ASIACRYPT 2012.
Ed. by X.Wang and K. Sako. Vol. 7658. Lecture Notes in Computer Science.
Springer, Heidelberg. 681–698. doi: 10.1007/978-3-642-34961-4_41.

Aumann, Y. and Y. Lindell. 2007. “Security Against Covert Adversaries:
Efficient Protocols for Realistic Adversaries”. In: TCC 2007: 4th Theory of
Cryptography Conference. Ed. by S. P. Vadhan. Vol. 4392. Lecture Notes
in Computer Science. Springer, Heidelberg. 137–156.

Bahmani, R., M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi. 2017. “Secure multiparty computation from SGX”. In:
International Conference on Financial Cryptography and Data Security.
477–497.

https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/978-3-642-34961-4_41

156 References

Ball, M., T. Malkin, and M. Rosulek. 2016. “Garbling Gadgets for Boolean
and Arithmetic Circuits”. In: ACM CCS 16: 23rd Conference on Computer
and Communications Security. Ed. by E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi. ACM Press. 565–577.

Bar-Ilan Center for Research in Applied Cryptography and Cyber Security.
2014. “SCAPI: Secure Computation API”. https://cyber.biu.ac.il/scapi/.

Beaver, D. 1992. “EfficientMultiparty Protocols Using Circuit Randomization”.
In: Advances in Cryptology – CRYPTO’91. Ed. by J. Feigenbaum. Vol. 576.
Lecture Notes in Computer Science. Springer, Heidelberg. 420–432.

Beaver, D. 1995. “Precomputing Oblivious Transfer”. In: Advances in Cryp-
tology – CRYPTO’95. Ed. by D. Coppersmith. Vol. 963. Lecture Notes in
Computer Science. Springer, Heidelberg. 97–109.

Beaver, D. 1996. “Correlated Pseudorandomness and the Complexity of Private
Computations”. In: 28th Annual ACM Symposium on Theory of Computing.
ACM Press. 479–488.

Beaver, D., S. Micali, and P. Rogaway. 1990. “The Round Complexity of
Secure Protocols (Extended Abstract)”. In: 22nd Annual ACM Symposium
on Theory of Computing. ACM Press. 503–513.

Beerliová-Trubíniová, Z. andM.Hirt. 2008. “Perfectly-SecureMPCwith Linear
Communication Complexity”. In: TCC 2008: 5th Theory of Cryptography
Conference. Ed. by R. Canetti. Vol. 4948. Lecture Notes in Computer
Science. Springer, Heidelberg. 213–230.

Beimel, A. and B. Chor. 1993. “Universally Ideal Secret Sharing Schemes
(Preliminary Version)”. In: Advances in Cryptology – CRYPTO’92. Ed. by
E. F. Brickell. Vol. 740. Lecture Notes in Computer Science. Springer,
Heidelberg. 183–195.

Bellare, M., V. T. Hoang, S. Keelveedhi, and P. Rogaway. 2013. “Efficient
Garbling from a Fixed-Key Blockcipher”. In: 2013 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press. 478–492.

Bellare, M., V. T. Hoang, and P. Rogaway. 2012. “Foundations of garbled
circuits”. In: ACM CCS 12: 19th Conference on Computer and Communi-
cations Security. Ed. by T. Yu, G. Danezis, and V. D. Gligor. ACM Press.
784–796.

https://cyber.biu.ac.il/scapi/

References 157

Bellare, M. and P. Rogaway. 1993. “Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols”. In: ACM CCS 93: 1st Conference on
Computer and Communications Security. Ed. by V. Ashby. ACM Press.
62–73.

Bendlin, R., I. Damgård,C.Orlandi, andS. Zakarias. 2011. “Semi-homomorphic
Encryption and Multiparty Computation”. In: Advances in Cryptology –
EUROCRYPT 2011. Ed. by K. G. Paterson. Vol. 6632. Lecture Notes in
Computer Science. Springer, Heidelberg. 169–188.

Ben-Or,M., S. Goldwasser, andA.Wigderson. 1988. “Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract)”. In: 20th Annual ACM Symposium on Theory of Computing.
ACM Press. 1–10.

Bestavros, A., A. Lapets, and M. Varia. 2017. “User-centric Distributed
Solutions for Privacy-preserving Analytics”. Communications of the ACM.
60(2): 37–39. issn: 0001-0782. doi: 10.1145/3029603.

Biryukov, A., D. Khovratovich, and I. Nikolic. 2009. “Distinguisher and
Related-Key Attack on the Full AES-256”. In: Advances in Cryptology –
CRYPTO 2009. Ed. by S. Halevi. Vol. 5677. Lecture Notes in Computer
Science. Springer, Heidelberg. 231–249.

Bogdanov, D. 2015. “Smarter decisions with no privacy breaches - practical
secure computation for governments and companies”. https://rwc.iacr.org/
2015/Slides/RWC-2015-Bogdanov-final.pdf, retrieved March 9, 2018.

Bogdanov, D., S. Laur, and J. Willemson. 2008a. “Sharemind: A Framework
for Fast Privacy-Preserving Computations”. In: ESORICS 2008: 13th
European Symposium on Research in Computer Security. Ed. by S. Jajodia
and J. López. Vol. 5283. Lecture Notes in Computer Science. Springer,
Heidelberg. 192–206.

Bogdanov, D., S. Laur, and J. Willemson. 2008b. “Sharemind: A framework
for fast privacy-preserving computations”. In: European Symposium on
Research in Computer Security. Springer. 192–206.

https://doi.org/10.1145/3029603
https://rwc.iacr.org/2015/Slides/RWC-2015-Bogdanov-final.pdf
https://rwc.iacr.org/2015/Slides/RWC-2015-Bogdanov-final.pdf

158 References

Bogetoft, P., D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøi-
gaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I. Schwartzbach,
and T. Toft. 2009. “Secure Multiparty Computation Goes Live”. In: FC
2009: 13th International Conference on Financial Cryptography and Data
Security. Ed. by R. Dingledine and P. Golle. Vol. 5628. Lecture Notes in
Computer Science. Springer, Heidelberg. 325–343.

Boneh, D., E.-J. Goh, and K. Nissim. 2005. “Evaluating 2-DNF formulas on
ciphertexts”. In: Theory of Cryptography Conference. Springer. 325–341.

Boyle, E., N. Gilboa, and Y. Ishai. 2016a. “Breaking the circuit size barrier
for secure computation under DDH”. In: Annual Cryptology Conference.
Springer. 509–539.

Boyle, E., N. Gilboa, and Y. Ishai. 2016b. “Function Secret Sharing: Improve-
ments and Extensions”. In: ACM CCS 16: 23rd Conference on Computer
and Communications Security. Ed. by E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi. ACM Press. 1292–1303.

Boyle, E., Y. Ishai, and A. Polychroniadou. 2018. “Limits of Practical Sublinear
Secure Computation”. In: Annual Cryptology Conference. Springer.

Brandão, L. T. A. N. 2013. “Secure Two-Party Computation with Reusable
Bit-Commitments, via a Cut-and-Choose with Forge-and-Lose Technique
- (Extended Abstract)”. In: Advances in Cryptology – ASIACRYPT 2013,
Part II. Ed. by K. Sako and P. Sarkar. Vol. 8270. Lecture Notes in Computer
Science. Springer, Heidelberg. 441–463. doi: 10.1007/978-3-642-42045-
0_23.

Brickell, J., D. E. Porter, V. Shmatikov, and E. Witchel. 2007. “Privacy-
preserving remote diagnostics”. In: ACM CCS 07: 14th Conference on
Computer and Communications Security. Ed. by P. Ning, S. D. C. di
Vimercati, and P. F. Syverson. ACM Press. 498–507.

Buescher, N. and S. Katzenbeisser. 2015. “Faster Secure Computation through
Automatic Parallelization.” In: USENIX Security Symposium. 531–546.

Buescher, N., A. Weber, and S. Katzenbeisser. 2018. “Towards Practical RAM
Based Secure Computation”. In: European Symposium on Research in
Computer Security. Springer. 416–437.

https://doi.org/10.1007/978-3-642-42045-0_23
https://doi.org/10.1007/978-3-642-42045-0_23

References 159

Bulck, J. V., M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M.
Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. 2018. “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution”. In: 27th USENIX Security Symposium. Baltimore, MD:
USENIX Association. 991–1008.

Burkhart, M., M. Strasser, D. Many, and X. Dimitropoulos. 2010. “SEPIA:
Privacy-preserving aggregation of multi-domain network events and statis-
tics”. In:Proceedings of the 19th USENIX Security Symposium.Washington,
DC, USA: USENIX Association.

Calctopia, Inc. 2017. “SECCOMP— The Secure Spreadsheet”. https://www.
calctopia.com/.

Canetti, R. 2001. “Universally Composable Security: A New Paradigm for
Cryptographic Protocols”. In: 42nd Annual Symposium on Foundations of
Computer Science. IEEE Computer Society Press. 136–145.

Canetti, R., A. Cohen, and Y. Lindell. 2015. “A Simpler Variant of Univer-
sally Composable Security for Standard Multiparty Computation”. In:
Advances in Cryptology – CRYPTO 2015, Part II. Ed. by R. Gennaro and
M. J. B. Robshaw. Vol. 9216. Lecture Notes in Computer Science. Springer,
Heidelberg. 3–22. doi: 10.1007/978-3-662-48000-7_1.

Canetti, R., O. Goldreich, and S. Halevi. 1998. “The Random Oracle Method-
ology, Revisited (Preliminary Version)”. In: 30th Annual ACM Symposium
on Theory of Computing. ACM Press. 209–218.

Canetti, R., A. Jain, and A. Scafuro. 2014. “Practical UC security with a Global
Random Oracle”. In: ACM CCS 14: 21st Conference on Computer and
Communications Security. Ed. by G.-J. Ahn, M. Yung, and N. Li. ACM
Press. 597–608.

Carter, H., B. Mood, P. Traynor, and K. Butler. 2013. “Secure outsourced
Garbled Circuit Evaluation forMobile Devices”. In: 22nd USENIX Security
Symposium. USENIX Association.

Carter, H., B. Mood, P. Traynor, and K. Butler. 2016. “Secure outsourced
garbled circuit evaluation for mobile devices”. Journal of Computer
Security. 24(2): 137–180.

https://www.calctopia.com/
https://www.calctopia.com/
https://doi.org/10.1007/978-3-662-48000-7_1

160 References

Cash, D., P. Grubbs, J. Perry, and T. Ristenpart. 2015. “Leakage-Abuse Attacks
Against Searchable Encryption”. In: ACM CCS 15: 22nd Conference on
Computer and Communications Security. Ed. by I. Ray, N. Li, and C.
Kruegel: ACM Press. 668–679.

Chan, T.-H. H., K.-M. Chung, B. Maggs, and E. Shi. 2017. “Foundations of
Differentially Oblivious Algorithms”. Cryptology ePrint Archive, Report
2017/1033. https://eprint.iacr.org/2017/1033.

Chandran, N., J. A. Garay, P. Mohassel, and S. Vusirikala. 2017. “Efficient,
Constant-Round and Actively Secure MPC: Beyond the Three-Party Case”.
In: ACM CCS 17: 24th Conference on Computer and Communications
Security. Ed. by B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu.
ACM Press. 277–294.

Chase, M., D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger,
D. Slamanig, and G. Zaverucha. 2017. “Post-Quantum Zero-Knowledge
and Signatures from Symmetric-Key Primitives”. In: ACM CCS 17: 24th
Conference on Computer and Communications Security. Ed. by B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM Press. 1825–1842.

Chaum, D. 1983. “Blind Signature System”. In: Advances in Cryptology –
CRYPTO’83. Ed. by D. Chaum. Plenum Press, New York, USA. 153.

Chaum, D., C. Crépeau, and I. Damgård. 1988. “Multiparty Unconditionally
Secure Protocols (Extended Abstract)”. In: 20th Annual ACM Symposium
on Theory of Computing. ACM Press. 11–19.

Chillotti, I., N. Gama, M. Georgieva, and M. Izabachène. 2016. “Faster Fully
Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds”. In:
Advances in Cryptology – ASIACRYPT 2016, Part I. Ed. by J. H. Cheon
and T. Takagi. Vol. 10031. Lecture Notes in Computer Science. Springer,
Heidelberg. 3–33. doi: 10.1007/978-3-662-53887-6_1.

Chillotti, I., N. Gama, M. Georgieva, and M. Izabachène. 2017. “Faster Packed
Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE”.
In: Advances in Cryptology – ASIACRYPT 2017, Part I. Ed. by T. Takagi
and T. Peyrin. Vol. 10624. Lecture Notes in Computer Science. Springer,
Heidelberg. 377–408.

https://eprint.iacr.org/2017/1033
https://doi.org/10.1007/978-3-662-53887-6_1

References 161

Choi, S. G., K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. 2012a.
“Secure Multi-Party Computation of Boolean Circuits with Applications
to Privacy in On-Line Marketplaces”. In: Topics in Cryptology – CT-
RSA 2012. Ed. by O. Dunkelman. Vol. 7178. Lecture Notes in Computer
Science. Springer, Heidelberg. 416–432.

Choi, S. G., J. Katz, R. Kumaresan, and H.-S. Zhou. 2012b. “On the Security of
the “Free-XOR” Technique”. In: TCC 2012: 9th Theory of Cryptography
Conference. Ed. by R. Cramer. Vol. 7194. Lecture Notes in Computer
Science. Springer, Heidelberg. 39–53.

Chor, B., O. Goldreich, E. Kushilevitz, and M. Sudan. 1995. “Private Informa-
tion Retrieval”. In: 36th Symposium on Foundations of Computer Science.
IEEE. 41–50.

Clarke, E., D. Kroening, and F. Lerda. 2004. “A tool for checking ANSI-C
programs”. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 168–176.

Cleve, R. 1986. “Limits on the Security of Coin Flips when Half the Processors
Are Faulty (Extended Abstract)”. In: 18th Annual ACM Symposium on
Theory of Computing. ACM Press. 364–369.

Cybernetica. 2015. “Track Big Data Between Government and Education”.
https://sharemind.cyber.ee/big-data-analytics-protection/, retrieved March
9, 2018.

Damgård, I. and M. Jurik. 2001. “A generalisation, a simpli. cation and some
applications of Paillier’s probabilistic public-key system”. In: International
Workshop on Public Key Cryptography. 119–136.

Damgård, I., M. Keller, E. Larraia, C. Miles, and N. P. Smart. 2012a. “Im-
plementing AES via an actively/covertly secure dishonest-majority MPC
protocol”. In: International Conference on Security and Cryptography for
Networks. Springer. 241–263.

Damgård, I., J. B. Nielsen,M. Nielsen, and S. Ranellucci. 2017. “The TinyTable
Protocol for 2-Party Secure Computation, or: Gate-Scrambling Revisited”.
In: Advances in Cryptology – CRYPTO 2017, Part I. Ed. by J. Katz and
H. Shacham. Vol. 10401. Lecture Notes in Computer Science. Springer,
Heidelberg. 167–187.

https://sharemind.cyber.ee/big-data-analytics-protection/

162 References

Damgård, I., V. Pastro, N. P. Smart, and S. Zakarias. 2012b. “Multiparty
Computation from Somewhat Homomorphic Encryption”. In: Advances
in Cryptology – CRYPTO 2012. Ed. by R. Safavi-Naini and R. Canetti.
Vol. 7417. Lecture Notes in Computer Science. Springer, Heidelberg. 643–
662.

Damgård, I. and S. Zakarias. 2013. “Constant-Overhead Secure Computation
of Boolean Circuits using Preprocessing”. In: TCC 2013: 10th Theory of
Cryptography Conference. Ed. by A. Sahai. Vol. 7785. Lecture Notes in
Computer Science. Springer, Heidelberg. 621–641. doi: 10.1007/978-3-
642-36594-2_35.

D’Arco, P. and R. De Prisco. 2014. “Secure Two-Party Computation: A Visual
Way”. In: ICITS 13: 7th International Conference on Information Theoretic
Security. Ed. by C. Padró. Vol. 8317. Lecture Notes in Computer Science.
Springer, Heidelberg. 18–38. doi: 10.1007/978-3-319-04268-8_2.

D’Arco, P. and R. De Prisco. 2016. “Secure computation without computers”.
651(Sept.).

De Cristofaro, E., M. Manulis, and B. Poettering. 2013. “Private Discovery of
Common Social Contacts”. International Journal of Information Security.
12(1): 49–65.

Demmler, D., T. Schneider, and M. Zohner. 2015. “ABY - A Framework
for Efficient Mixed-Protocol Secure Two-Party Computation”. In: ISOC
Network and Distributed System Security Symposium – NDSS 2015. The
Internet Society.

Dessouky, G., F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni, and
M. Zohner. 2017. “Pushing the communication barrier in secure compu-
tation using lookup tables”. In: Network and Distributed System Security
Symposium.

Doerner, J., D. Evans, and A. Shelat. 2016. “Secure Stable Matching at Scale”.
In: ACM CCS 16: 23rd Conference on Computer and Communications
Security. Ed. by E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi. ACM Press. 1602–1613.

Doerner, J. and A. Shelat. 2017. “Scaling ORAM for Secure Computation”.
In: ACM CCS 17: 24th Conference on Computer and Communications
Security. Ed. by B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu.
ACM Press. 523–535.

https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-319-04268-8_2

References 163

Dwork, C. and A. Roth. 2014. “The algorithmic foundations of differential
privacy”.Foundations and Trends in Theoretical Computer Science. 9(3–4):
211–407.

Ejgenberg, Y., M. Farbstein, M. Levy, and Y. Lindell. 2012. “SCAPI: The
Secure Computation Application Programming Interface”. Cryptology
ePrint Archive, Report 2012/629. https://eprint.iacr.org/2012/629.

Faber, S., S. Jarecki, S. Kentros, and B. Wei. 2015. “Three-party ORAM
for secure computation”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 360–385.

Fan, X., C. Ganesh, and V. Kolesnikov. 2017. “Hashing Garbled Circuits for
Free”. In: Advances in Cryptology – EUROCRYPT 2017, Part II. Ed. by
J. Coron and J. B. Nielsen. Vol. 10211. Lecture Notes in Computer Science.
Springer, Heidelberg. 456–485.

Fisch, B. A., B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin,
and S. M. Bellovin. 2015. “Malicious-Client Security in Blind Seer:
A Scalable Private DBMS”. In: 2015 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press. 395–410. doi: 10.1109/SP.2015.31.

Fraser, C. W. and D. R. Hanson. 1995. A retargetable C compiler: design and
implementation. Addison-Wesley Longman Publishing Co., Inc.

Frederiksen, T. K., T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti. 2015.
“TinyLEGO: An Interactive Garbling Scheme for Maliciously Secure
Two-Party Computation”. Cryptology ePrint Archive, Report 2015/309.
https://eprint.iacr.org/2015/309.

Frederiksen, T. K., T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi.
2013. “MiniLEGO: Efficient Secure Two-Party Computation from General
Assumptions”. In: Advances in Cryptology – EUROCRYPT 2013. Ed. by T.
Johansson and P. Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science.
Springer, Heidelberg. 537–556. doi: 10.1007/978-3-642-38348-9_32.

Furukawa, J., Y. Lindell, A. Nof, and O. Weinstein. 2017. “High-Throughput
Secure Three-Party Computation for Malicious Adversaries and an Honest
Majority”. In: Advances in Cryptology – EUROCRYPT 2017, Part II.
Ed. by J. Coron and J. B. Nielsen. Vol. 10211. Lecture Notes in Computer
Science. Springer, Heidelberg. 225–255.

https://eprint.iacr.org/2012/629
https://doi.org/10.1109/SP.2015.31
https://eprint.iacr.org/2015/309
https://doi.org/10.1007/978-3-642-38348-9_32

164 References

Gallagher, B., D. Lo, P. F. Frandsen, J. B. Nielsen, and K. Nielsen. 2017.
“Insights Network – A Blockchain Data Exchange”. https://s3.amazonaws.
com/insightsnetwork/InsightsNetworkWhitepaperV0.5.pdf.

Gascón, A., P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D.
Evans. 2017. “Privacy-Preserving Distributed Linear Regression on High-
Dimensional Data”. Proceedings on Privacy Enhancing Technologies.
2017(4): 248–267.

Gentry, C. 2009. “Fully homomorphic encryption using ideal lattices”. In: 41st

ACM Symposium on Theory of Computing.
Gentry, C. and S. Halevi. 2011. “Implementing Gentry’s Fully-Homomorphic

Encryption Scheme”. In: Advances in Cryptology – EUROCRYPT 2011.
Ed. by K. G. Paterson. Vol. 6632. Lecture Notes in Computer Science.
Springer, Heidelberg. 129–148.

Giacomelli, I., J. Madsen, and C. Orlandi. 2016. “ZKBoo: Faster Zero-
Knowledge for Boolean Circuits”. In: 25th USENIX Security Symposium.
Austin, TX: USENIX Association. 1069–1083.

Gilboa, N. and Y. Ishai. 2014. “Distributed Point Functions and Their Appli-
cations”. In: Advances in Cryptology – EUROCRYPT 2014. Ed. by P. Q.
Nguyen and E. Oswald. Vol. 8441. Lecture Notes in Computer Science.
Springer, Heidelberg. 640–658. doi: 10.1007/978-3-642-55220-5_35.

Goldreich, O. 2004. Foundations of Cryptography: Volume 2. Cambridge
University Press.

Goldreich, O., S. Micali, and A. Wigderson. 1987. “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority”.
In: 19th Annual ACM Symposium on Theory of Computing. Ed. by A. Aho.
ACM Press. 218–229.

Goldreich, O. and R. Ostrovsky. 1996. “Software Protection and Simulation
on Oblivious RAMs”. Journal of the ACM. 43(3).

Goldwasser, S. and S. Micali. 1984. “Probabilistic Encryption”. Journal of
Computer and System Sciences. 28(2): 270–299.

Goldwasser, S., S. Micali, and C. Rackoff. 1985. “The Knowledge Complexity
of Interactive Proof-Systems (Extended Abstract)”. In: 17th Annual ACM
Symposium on Theory of Computing. ACM Press. 291–304.

https://s3.amazonaws.com/insightsnetwork/InsightsNetworkWhitepaperV0.5.pdf
https://s3.amazonaws.com/insightsnetwork/InsightsNetworkWhitepaperV0.5.pdf
https://doi.org/10.1007/978-3-642-55220-5_35

References 165

Gordon, S. D., C. Hazay, J. Katz, and Y. Lindell. 2008. “Complete fairness
in secure two-party computation”. In: 40th Annual ACM Symposium on
Theory of Computing. Ed. by R. E. Ladner and C. Dwork. ACM Press.
413–422.

Gordon, S. D., J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and Y.
Vahlis. 2012. “Secure two-party computation in sublinear (amortized) time”.
In: ACM CCS 12: 19th Conference on Computer and Communications
Security. Ed. by T. Yu, G. Danezis, and V. D. Gligor. ACM Press. 513–524.

Goyal, V., Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. 2010. “Founding
Cryptography on Tamper-Proof Hardware Tokens”. In: TCC 2010: 7th
Theory of Cryptography Conference. Ed. by D. Micciancio. Vol. 5978.
Lecture Notes in Computer Science. Springer, Heidelberg. 308–326.

Goyal, V., P.Mohassel, andA. Smith. 2008. “Efficient TwoParty andMulti Party
Computation Against Covert Adversaries”. In: Advances in Cryptology
– EUROCRYPT 2008. Ed. by N. P. Smart. Vol. 4965. Lecture Notes in
Computer Science. Springer, Heidelberg. 289–306.

Gueron, S., Y. Lindell, A. Nof, and B. Pinkas. 2015. “Fast Garbling of Circuits
Under Standard Assumptions”. In: ACM CCS 15: 22nd Conference on
Computer and Communications Security. Ed. by I. Ray, N. Li, and C.
Kruegel: ACM Press. 567–578.

Gupta, D., B. Mood, J. Feigenbaum, K. Butler, and P. Traynor. 2016. “Using
Intel Software Guard Extensions for efficient two-party secure function
evaluation”. In: International Conference on Financial Cryptography and
Data Security. Springer. 302–318.

Gupta, T., H. Fingler, L. Alvisi, and M. Walfish. 2017. “Pretzel: Email encryp-
tion and provider-supplied functions are compatible”. In: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM). ACM. 169–182.

Halevi, S. and V. Shoup. 2015. “Bootstrapping for HElib”. In: Advances in
Cryptology – EUROCRYPT 2015. Ed. by E. Oswald and M. Fischlin.
Berlin, Heidelberg: Springer Berlin Heidelberg. 641–670.

Hazay, C. and Y. Lindell. 2008. “Constructions of truly practical secure
protocols using standardsmartcards”. In: ACM CCS 08: 15th Conference
on Computer and Communications Security. Ed. by P. Ning, P. F. Syverson,
and S. Jha. ACM Press. 491–500.

166 References

He, X., A. Machanavajjhala, C. J. Flynn, and D. Srivastava. 2017. “Composing
Differential Privacy and Secure Computation: A Case Study on Scaling
Private Record Linkage”. In: ACM CCS 17: 24th Conference on Computer
and Communications Security. Ed. by B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu. ACM Press. 1389–1406.

Henecka, W., S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. 2010.
“TASTY: tool for automating secure two-party computations”. In: ACM
CCS 10: 17th Conference on Computer and Communications Security.
Ed. by E. Al-Shaer, A. D. Keromytis, and V. Shmatikov. ACM Press.
451–462.

Hofheinz, D. and V. Shoup. 2011. “GNUC: A New Universal Composability
Framework”. Cryptology ePrint Archive, Report 2011/303. http://eprint.
iacr.org/2011/303.

Holzer, A., M. Franz, S. Katzenbeisser, and H. Veith. 2012. “Secure two-party
computations in ANSI C”. In: ACMCCS 12: 19th Conference on Computer
and Communications Security. Ed. by T. Yu, G. Danezis, and V. D. Gligor.
ACM Press. 772–783.

Huang, Y., P. Chapman, andD. Evans. 2011a. “Privacy-PreservingApplications
on Smartphones”. In: 6th USENIX Workshop on Hot Topics in Security.

Huang, Y., D. Evans, and J. Katz. 2012a. “Private Set Intersection: Are Garbled
Circuits Better than Custom Protocols?” In: ISOC Network and Distributed
System Security Symposium – NDSS 2012. The Internet Society.

Huang, Y., D. Evans, J. Katz, and L. Malka. 2011b. “Faster Secure Two-
Party Computation Using Garbled Circuits”. In: 20th USENIX Security
Symposium.

Huang, Y., J. Katz, and D. Evans. 2012b. “Quid-Pro-Quo-tocols: Strengthening
Semi-honest Protocols with Dual Execution”. In: 2012 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press. 272–284.

Huang, Y., J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Malozemoff. 2014.
“AmortizingGarbledCircuits”. In:Advances inCryptology –CRYPTO2014,
Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617. Lecture Notes in
Computer Science. Springer, Heidelberg. 458–475. doi: 10.1007/978-3-
662-44381-1_26.

http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2011/303
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26

References 167

Huang, Y., L. Malka, D. Evans, and J. Katz. 2011c. “Efficient Privacy-
Preserving Biometric Identification”. In: ISOC Network and Distributed
System Security Symposium – NDSS 2011. The Internet Society.

Husted, N., S. Myers, A. Shelat, and P. Grubbs. 2013. “GPU and CPU
parallelization of honest-but-curious secure two-party computation”. In:
Proceedings of the 29th Annual Computer Security Applications Confer-
ence. ACM. 169–178.

Impagliazzo, R. and S. Rudich. 1989. “Limits on the Provable Consequences
of One-Way Permutations”. In: 21st Annual ACM Symposium on Theory
of Computing. ACM Press. 44–61.

Ishai, Y., J. Kilian, K. Nissim, and E. Petrank. 2003. “Extending Oblivious
Transfers Efficiently”. In: Advances in Cryptology – CRYPTO 2003. Ed.
by D. Boneh. Vol. 2729. Lecture Notes in Computer Science. Springer,
Heidelberg. 145–161.

Ishai, Y., E. Kushilevitz, R. Ostrovsky, and A. Sahai. 2007. “Zero-knowledge
from secure multiparty computation”. In: 39th Annual ACM Symposium
on Theory of Computing. Ed. by D. S. Johnson and U. Feige. ACM Press.
21–30.

Ishai, Y., M. Prabhakaran, and A. Sahai. 2008. “Founding Cryptography on
ObliviousTransfer - Efficiently”. In:Advances inCryptology –CRYPTO2008.
Ed. by D. Wagner. Vol. 5157. Lecture Notes in Computer Science. Springer,
Heidelberg. 572–591.

Islam, M. S., M. Kuzu, and M. Kantarcioglu. 2012. “Access Pattern disclosure
on Searchable Encryption: Ramification, Attack and Mitigation”. In: ISOC
Network and Distributed System Security Symposium – NDSS 2012. The
Internet Society.

Jagadeesh, K., D. Wu, J. Birgmeier, D. Boneh, and G. Bejerano. 2017. “Deriv-
ing Genomic Diagnoses Without Revealing Patient Genomes”. Science.
357(6352): 692–695.

Jakobsen, T. P., J. B. Nielsen, and C. Orlandi. 2016. “A Framework for
Outsourcing of Secure Computation”. Cryptology ePrint Archive, Report
2016/037. https://eprint.iacr.org/2016/037 (subsumes earlier version
published in 6th ACMWorkshop on Cloud Computing Security).

https://eprint.iacr.org/2016/037

168 References

Jarecki, S. and V. Shmatikov. 2007. “Efficient Two-Party Secure Computation
on Committed Inputs”. In: Advances in Cryptology – EUROCRYPT 2007.
Ed. by M. Naor. Vol. 4515. Lecture Notes in Computer Science. Springer,
Heidelberg. 97–114.

Jawurek, M., F. Kerschbaum, and C. Orlandi. 2013. “Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently”. In:
ACMCCS 13: 20th Conference onComputer andCommunications Security.
Ed. by A.-R. Sadeghi, V. D. Gligor, and M. Yung. ACM Press. 955–966.

Juma,A. andY.Vahlis. 2010. “ProtectingCryptographicKeys against Continual
Leakage”. In: Advances in Cryptology – CRYPTO 2010. Ed. by T. Rabin.
Vol. 6223. Lecture Notes in Computer Science. Springer, Heidelberg. 41–
58.

Kairouz, P., S. Oh, and P. Viswanath. 2015. “Secure multi-party differential
privacy”. In: Advances in Neural Information Processing Systems. 2008–
2016.

Kamara, S., P. Mohassel, M. Raykova, and S. S. Sadeghian. 2014. “Scaling
Private Set Intersection to Billion-Element Sets”. In: FC 2014: 18th
International Conference on Financial Cryptography and Data Security.
Ed. by N. Christin and R. Safavi-Naini. Vol. 8437. Lecture Notes in
Computer Science. Springer, Heidelberg. 195–215. doi: 10.1007/978-3-
662-45472-5_13.

Kamara, S., P. Mohassel, and B. Riva. 2012. “Salus: a system for server-
aided secure function evaluation”. In: ACM CCS 12: 19th Conference on
Computer and Communications Security. Ed. by T. Yu, G. Danezis, and
V. D. Gligor. ACM Press. 797–808.

Katz, J. 2007. “Universally Composable Multi-party Computation Using
Tamper-ProofHardware”. In:Advances inCryptology –EUROCRYPT2007.
Ed. by M. Naor. Vol. 4515. Lecture Notes in Computer Science. Springer,
Heidelberg. 115–128.

Katz, J., V. Kolesnikov, and X. Wang. 2018. “Improved Non-Interactive Zero
Knowledge with Applications to Post-Quantum Signatures”. Cryptology
ePrint Archive, Report 2018/475. https://eprint.iacr.org/2018/475.

https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://eprint.iacr.org/2018/475

References 169

Keller, M., E. Orsini, and P. Scholl. 2015. “Actively Secure OT Extension
with Optimal Overhead”. In: Advances in Cryptology – CRYPTO 2015,
Part I. Ed. by R. Gennaro and M. J. B. Robshaw. Vol. 9215. Lecture Notes
in Computer Science. Springer, Heidelberg. 724–741. doi: 10.1007/978-3-
662-47989-6_35.

Keller, M., E. Orsini, and P. Scholl. 2016. “MASCOT: Faster Malicious
Arithmetic Secure Computation with Oblivious Transfer”. In: ACM CCS
16: 23rd Conference on Computer and Communications Security. Ed. by
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi.
ACM Press. 830–842.

Keller, M., V. Pastro, and D. Rotaru. 2018. “Overdrive: making SPDZ great
again”. In:Annual InternationalConference on the Theory andApplications
of Cryptographic Techniques. Springer. 158–189.

Keller, M. and P. Scholl. 2014. “Efficient, oblivious data structures for MPC”.
In: International Conference on the Theory and Application of Cryptology
and Information Security. Springer. 506–525.

Kempka, C., R. Kikuchi, and K. Suzuki. 2016. “How to circumvent the two-
ciphertext lower bound for linear garbling schemes”. In: International
Conference on the Theory and Application of Cryptology and Information
Security. Springer. 967–997.

Kennedy, W. S., V. Kolesnikov, and G. T. Wilfong. 2017. “Overlaying Condi-
tional Circuit Clauses for Secure Computation”. In:Advances in Cryptology
– ASIACRYPT 2017, Part II. Ed. by T. Takagi and T. Peyrin. Vol. 10625.
Lecture Notes in Computer Science. Springer, Heidelberg. 499–528.

Kerschbaum, F., T. Schneider, and A. Schröpfer. 2014. “Automatic Protocol
Selection in Secure Two-Party Computations”. In: ACNS 14: 12th In-
ternational Conference on Applied Cryptography and Network Security.
Ed. by I. Boureanu, P. Owesarski, and S. Vaudenay. Vol. 8479. Lec-
ture Notes in Computer Science. Springer, Heidelberg. 566–584. doi:
10.1007/978-3-319-07536-5_33.

Kilian, J. 1988. “Founding Cryptography on Oblivious Transfer”. In: 20th
Annual ACM Symposium on Theory of Computing. ACM Press. 20–31.

Kiraz, M. and B. Schoenmakers. 2006. “A protocol issue for the malicious case
of Yao’s garbled circuit construction”. In: 27th Symposium on Information
Theory in the Benelux. 283–290.

https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-319-07536-5_33

170 References

Knudsen, L. R. and V. Rijmen. 2007. “Known-Key Distinguishers for Some
Block Ciphers”. In: Advances in Cryptology – ASIACRYPT 2007. Ed. by
K. Kurosawa. Vol. 4833. Lecture Notes in Computer Science. Springer,
Heidelberg. 315–324.

Kolesnikov, V. 2005. “Gate Evaluation Secret Sharing and Secure One-Round
Two-Party Computation”. In: Advances in Cryptology – ASIACRYPT 2005.
Ed. by B. K. Roy. Vol. 3788. Lecture Notes in Computer Science. Springer,
Heidelberg. 136–155.

Kolesnikov, V. 2006. “Secure Two-party Computation and Communication”.
University of Toronto Ph.D. Thesis.

Kolesnikov, V. 2010. “Truly Efficient String Oblivious Transfer Using Reset-
table Tamper-Proof Tokens”. In: TCC 2010: 7th Theory of Cryptography
Conference. Ed. by D. Micciancio. Vol. 5978. Lecture Notes in Computer
Science. Springer, Heidelberg. 327–342.

Kolesnikov, V. and R. Kumaresan. 2013. “Improved OT Extension for Transfer-
ring Short Secrets”. In: Advances in Cryptology – CRYPTO 2013, Part II.
Ed. by R. Canetti and J. A. Garay. Vol. 8043. Lecture Notes in Computer
Science. Springer, Heidelberg. 54–70. doi: 10.1007/978-3-642-40084-1_4.

Kolesnikov, V., R. Kumaresan, M. Rosulek, and N. Trieu. 2016. “Efficient
Batched Oblivious PRF with Applications to Private Set Intersection”.
In: ACM CCS 16: 23rd Conference on Computer and Communications
Security. Ed. by E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi. ACM Press. 818–829.

Kolesnikov, V. and A. J. Malozemoff. 2015. “Public Verifiability in the Covert
Model (Almost) for Free”. In: Advances in Cryptology – ASIACRYPT 2015,
Part II. Ed. by T. Iwata and J. H. Cheon. Vol. 9453. Lecture Notes in
Computer Science. Springer, Heidelberg. 210–235. doi: 10.1007/978-3-
662-48800-3_9.

Kolesnikov, V., N.Matania, B. Pinkas,M. Rosulek, andN. Trieu. 2017a. “Practi-
cal Multi-party Private Set Intersection from Symmetric-Key Techniques”.
In: ACM CCS 17: 24th Conference on Computer and Communications
Security. Ed. by B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu.
ACM Press. 1257–1272.

https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-48800-3_9

References 171

Kolesnikov, V., P. Mohassel, B. Riva, and M. Rosulek. 2015. “Richer Ef-
ficiency/Security Trade-offs in 2PC”. In: TCC 2015: 12th Theory of
Cryptography Conference, Part I. Ed. by Y. Dodis and J. B. Nielsen.
Vol. 9014. Lecture Notes in Computer Science. Springer, Heidelberg. 229–
259. doi: 10.1007/978-3-662-46494-6_11.

Kolesnikov, V., P. Mohassel, and M. Rosulek. 2014. “FleXOR: Flexible
Garbling forXORGates That Beats Free-XOR”. In:Advances inCryptology
– CRYPTO 2014, Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617.
Lecture Notes in Computer Science. Springer, Heidelberg. 440–457. doi:
10.1007/978-3-662-44381-1_25.

Kolesnikov, V., J. B. Nielsen, M. Rosulek, N. Trieu, and R. Trifiletti. 2017b.
“DUPLO: Unifying Cut-and-Choose for Garbled Circuits”. In: ACM CCS
17: 24th Conference on Computer and Communications Security. Ed. by
B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM Press. 3–20.

Kolesnikov, V., A.-R. Sadeghi, and T. Schneider. 2009. “Improved Garbled
Circuit Building Blocks and Applications to Auctions and Computing
Minima”. In: CANS 09: 8th International Conference on Cryptology and
Network Security. Ed. by J. A. Garay, A. Miyaji, and A. Otsuka. Vol. 5888.
Lecture Notes in Computer Science. Springer, Heidelberg. 1–20.

Kolesnikov, V., A.-R. Sadeghi, and T. Schneider. 2010. “From Dust to Dawn:
Practically Efficient Two-Party Secure Function Evaluation Protocols and
their Modular Design”. https://eprint.iacr.org/2010/079.

Kolesnikov,V., A.-R. Sadeghi, and T. Schneider. 2013. “ASystematicApproach
to Practically Efficient General Two-party Secure Function Evaluation
Protocols and Their Modular Design”. J. Comput. Secur. 21(2): 283–315.
issn: 0926-227X. url: http: / /dl .acm.org/citation.cfm?id=2590614.
2590617.

Kolesnikov, V. and T. Schneider. 2008a. “A Practical Universal Circuit Con-
struction and Secure Evaluation of Private Functions”. In: FC 2008: 12th
International Conference on Financial Cryptography and Data Security.
Ed. by G. Tsudik. Vol. 5143. Lecture Notes in Computer Science. Springer,
Heidelberg. 83–97.

https://doi.org/10.1007/978-3-662-46494-6_11
https://doi.org/10.1007/978-3-662-44381-1_25
https://eprint.iacr.org/2010/079
http://dl.acm.org/citation.cfm?id=2590614.2590617
http://dl.acm.org/citation.cfm?id=2590614.2590617

172 References

Kolesnikov, V. and T. Schneider. 2008b. “Improved Garbled Circuit: Free XOR
Gates and Applications”. In: ICALP 2008: 35th International Colloquium
on Automata, Languages and Programming, Part II. Ed. by L. Aceto,
I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz. Vol. 5126. Lecture Notes in Computer Science. Springer,
Heidelberg. 486–498.

Kreuter, B. 2017. “Secure MPC at Google”. Real World Crypto.
Kreuter, B., a. shelat abhi, B. Mood, and K. Butler. 2013. “PCF: A Portable

Circuit Format for Scalable Two-Party Secure Computation.” In: USENIX
Security Symposium. 321–336.

Küsters, R., T. Truderung, and A. Vogt. 2012. “A game-based definition of
coercion resistance and its applications”. Journal of Computer Security.
20(6): 709–764.

Launchbury, J., I. S. Diatchki, T. DuBuisson, and A. Adams-Moran. 2012.
“Efficient lookup-table protocol in secure multiparty computation”. In:
ACM SIGPLAN Notices. Vol. 47. No. 9. ACM. 189–200.

Lee, J., J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado,
and B. B. Kang. 2017a. “Hacking in Darkness: Return-oriented Program-
ming Against Secure Enclaves”. In: Proceedings of the 26th USENIX
Conference on Security Symposium. SEC’17. Vancouver, BC, Canada:
USENIX Association. 523–539. isbn: 978-1-931971-40-9. url: http :
//dl.acm.org/citation.cfm?id=3241189.3241231.

Lee, S.,M.-W. Shih, P. Gera, T. Kim,H.Kim, andM. Peinado. 2017b. “Inferring
Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing”.
In: Proceedings of the 26th USENIX Conference on Security Symposium.
SEC’17. Vancouver, BC, Canada: USENIX Association. 557–574. isbn:
978-1-931971-40-9. url: http://dl.acm.org/citation.cfm?id=3241189.
3241233.

Li,M., S. Yu, N. Cao, andW. Lou. 2013. “Privacy-preserving distributed profile
matching in proximity-based mobile social networks”. IEEE Transactions
on Wireless Communications. 12(5): 2024–2033.

Lindell, Y. 2013. “Fast Cut-and-Choose Based Protocols for Malicious and
Covert Adversaries”. In: Advances in Cryptology – CRYPTO 2013, Part II.
Ed. by R. Canetti and J. A. Garay. Vol. 8043. Lecture Notes in Computer
Science. Springer, Heidelberg. 1–17. doi: 10.1007/978-3-642-40084-1_1.

http://dl.acm.org/citation.cfm?id=3241189.3241231
http://dl.acm.org/citation.cfm?id=3241189.3241231
http://dl.acm.org/citation.cfm?id=3241189.3241233
http://dl.acm.org/citation.cfm?id=3241189.3241233
https://doi.org/10.1007/978-3-642-40084-1_1

References 173

Lindell, Y. and B. Pinkas. 2007. “An Efficient Protocol for Secure Two-Party
Computation in the Presence of Malicious Adversaries”. In: Advances in
Cryptology – EUROCRYPT 2007. Ed. by M. Naor. Vol. 4515. Lecture
Notes in Computer Science. Springer, Heidelberg. 52–78.

Lindell, Y. and B. Pinkas. 2009. “A Proof of Security of Yao’s Protocol for
Two-Party Computation”. Journal of Cryptology. 22(2): 161–188.

Lindell, Y. and B. Pinkas. 2011. “Secure Two-Party Computation via Cut-and-
Choose Oblivious Transfer”. In: TCC 2011: 8th Theory of Cryptography
Conference. Ed. by Y. Ishai. Vol. 6597. Lecture Notes in Computer Science.
Springer, Heidelberg. 329–346.

Lindell, Y., B. Pinkas, and N. P. Smart. 2008. “Implementing Two-Party
Computation Efficiently with Security Against Malicious Adversaries”.
In: SCN 08: 6th International Conference on Security in Communication
Networks. Ed. by R. Ostrovsky, R. D. Prisco, and I. Visconti. Vol. 5229.
Lecture Notes in Computer Science. Springer, Heidelberg. 2–20.

Lindell, Y. and B. Riva. 2014. “Cut-and-Choose Yao-Based Secure Computa-
tion in the Online/Offline and Batch Settings”. In: Advances in Cryptology
– CRYPTO 2014, Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617.
Lecture Notes in Computer Science. Springer, Heidelberg. 476–494. doi:
10.1007/978-3-662-44381-1_27.

Lindell, Y. and B. Riva. 2015. “Blazing Fast 2PC in the Offline/Online
Setting with Security for Malicious Adversaries”. In: ACM CCS 15: 22nd
Conference on Computer and Communications Security. Ed. by I. Ray,
N. Li, and C. Kruegel: ACM Press. 579–590.

Liu, J., M. Juuti, Y. Lu, and N. Asokan. 2017. “Oblivious Neural Network
Predictions via MiniONN Transformations”. In: ACM CCS 17: 24th
Conference on Computer and Communications Security. Ed. by B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM Press. 619–631.

López-Alt, A., E. Tromer, and V. Vaikuntanathan. 2012. “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption”. In:
44th Annual ACM Symposium on Theory of Computing. ACM. 1219–1234.

Lu, S. and R. Ostrovsky. 2013. “How to Garble RAM Programs”. In: Advances
in Cryptology – EUROCRYPT 2013. Ed. by T. Johansson and P. Q. Nguyen.
Vol. 7881. Lecture Notes in Computer Science. Springer, Heidelberg. 719–
734. doi: 10.1007/978-3-642-38348-9_42.

https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1007/978-3-642-38348-9_42

174 References

Malkhi, D., N. Nisan, B. Pinkas, andY. Sella. 2004. “Fairplay-Secure Two-Party
Computation System”. In: USENIX Security Symposium.

Marlinspike, M. 2017. “Technology preview: Private contact discovery for
Signal”. https://signal.org/blog/private-contact-discovery/.

Micali, S. and L. Reyzin. 2004. “Physically Observable Cryptography (Ex-
tended Abstract)”. In: TCC 2004: 1st Theory of Cryptography Conference.
Ed. by M. Naor. Vol. 2951. Lecture Notes in Computer Science. Springer,
Heidelberg. 278–296.

Mishra, P., R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. 2018. “Oblix: An
Efficient Oblivious Search Index”. In: 2018 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press.

Mohassel, P. and M. Franklin. 2006. “Efficiency Tradeoffs for Malicious
Two-Party Computation”. In: PKC 2006: 9th International Conference
on Theory and Practice of Public Key Cryptography. Ed. by M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin. Vol. 3958. Lecture Notes in Computer
Science. Springer, Heidelberg. 458–473.

Mohassel, P. and B. Riva. 2013. “Garbled Circuits Checking Garbled Circuits:
More Efficient and Secure Two-Party Computation”. In: Advances in
Cryptology – CRYPTO 2013, Part II. Ed. by R. Canetti and J. A. Garay.
Vol. 8043. Lecture Notes in Computer Science. Springer, Heidelberg. 36–
53. doi: 10.1007/978-3-642-40084-1_3.

Mohassel, P., M. Rosulek, and Y. Zhang. 2015. “Fast and Secure Three-party
Computation: The Garbled Circuit Approach”. In: ACM CCS 15: 22nd
Conference on Computer and Communications Security. Ed. by I. Ray,
N. Li, and C. Kruegel: ACM Press. 591–602.

Mohassel, P. and Y. Zhang. 2017. “SecureML: A System for Scalable Privacy-
Preserving Machine Learning”. In: 2017 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press. 19–38.

Mood, B., D. Gupta, H. Carter, K. Butler, and P. Traynor. 2016. “Frigate:
A validated, extensible, and efficient compiler and interpreter for secure
computation”. In: IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE. 112–127.

https://signal.org/blog/private-contact-discovery/
https://doi.org/10.1007/978-3-642-40084-1_3

References 175

Mukherjee, P. and D. Wichs. 2016. “Two round multiparty computation via
multi-key FHE”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EuroCrypt). Springer. 735–
763.

Naccache, D. and J. Stern. 1998. “A New Public Key Cryptosystem Based on
Higher Residues”. In: ACM CCS 98: 5th Conference on Computer and
Communications Security. ACM Press. 59–66.

Naor, M., B. Pinkas, and R. Sumner. 1999. “Privacy Preserving Auctions and
Mechanism Design”. In: 1st ACM Conference on Electronic Commerce.

Naveed,M., S. Kamara, and C. V.Wright. 2015. “Inference Attacks on Property-
Preserving Encrypted Databases”. In: ACM CCS 15: 22nd Conference
on Computer and Communications Security. Ed. by I. Ray, N. Li, and
C. Kruegel: ACM Press. 644–655.

Nielsen, J. B., P. S. Nordholt, C. Orlandi, and S. S. Burra. 2012. “A New Ap-
proach to Practical Active-Secure Two-Party Computation”. In: Advances
in Cryptology – CRYPTO 2012. Ed. by R. Safavi-Naini and R. Canetti.
Vol. 7417. Lecture Notes in Computer Science. Springer, Heidelberg. 681–
700.

Nielsen, J. B. andC.Orlandi. 2009. “LEGO forTwo-Party SecureComputation”.
In: TCC 2009: 6th Theory of Cryptography Conference. Ed. by O. Reingold.
Vol. 5444. Lecture Notes in Computer Science. Springer, Heidelberg. 368–
386.

Nikolaenko, V., S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh.
2013a. “Privacy-preserving matrix factorization”. In: ACM CCS 13: 20th
Conference on Computer and Communications Security. Ed. by A.-R.
Sadeghi, V. D. Gligor, and M. Yung. ACM Press. 801–812.

Nikolaenko, V., U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft.
2013b. “Privacy-Preserving Ridge Regression on Hundreds of Millions
of Records”. In: 2013 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press. 334–348.

Ohrimenko, O., F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa. 2016. “Oblivious Multi-Party Machine Learning on Trusted
Processors.” In: USENIX Security Symposium. 619–636.

Ostrovsky, R. and V. Shoup. 1997. “Private Information Storage”. In: ACM
Symposium on Theory of Computing.

176 References

Pagh, R. and F. F. Rodler. 2004. “Cuckoo hashing”. J. Algorithms. 51(2):
122–144. doi: 10.1016/j.jalgor.2003.12.002.

Paillier, P. 1999. “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes”. In: Advances in Cryptology – EUROCRYPT’99.
Ed. by J. Stern. Vol. 1592. Lecture Notes in Computer Science. Springer,
Heidelberg. 223–238.

Pappas, V., F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George,
A. D. Keromytis, and S. Bellovin. 2014. “Blind Seer: A Scalable Private
DBMS”. In: 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press. 359–374. doi: 10.1109/SP.2014.30.

Patra, A. and D. Ravi. 2018. “On the Exact Round Complexity of Secure
Three-Party Computation”. In: Advances in Cryptology - CRYPTO 2018 -
38th Annual International Cryptology Conference. Ed. by H. Shacham and
A. Boldyreva. Vol. 10992. Lecture Notes in Computer Science. Springer.
425–458. doi: 10.1007/978-3-319-96881-0.

Peikert, C., V. Vaikuntanathan, and B. Waters. 2008. “A Framework for
Efficient and Composable Oblivious Transfer”. In: Advances in Cryptology
– CRYPTO 2008. Ed. by D. Wagner. Vol. 5157. Lecture Notes in Computer
Science. Springer, Heidelberg. 554–571.

Pettai, M. and P. Laud. 2015. “Combining differential privacy and secure
multiparty computation”. In: 31st Annual Computer Security Applications
Conference. ACM. 421–430.

Pfitzmann, B. and M. Waidner. 2000. “Composition and Integrity Preservation
of Secure Reactive Systems”. In: ACM CCS 00: 7th Conference on
Computer and Communications Security. Ed. by S. Jajodia and P. Samarati.
ACM Press. 245–254.

Pinkas, B., T. Schneider, G. Segev, and M. Zohner. 2015. “Phasing: Private
Set Intersection Using Permutation-based Hashing”. In: 24th USENIX
Security Symposium. Ed. by J. Jung and T. Holz. USENIX Association.
515–530. url: https://www.usenix.org/conference/usenixsecurity15.

Pinkas, B., T. Schneider, N. P. Smart, and S. C. Williams. 2009. “Secure
Two-Party Computation Is Practical”. In: Advances in Cryptology – ASI-
ACRYPT 2009. Ed. by M. Matsui. Vol. 5912. Lecture Notes in Computer
Science. Springer, Heidelberg. 250–267.

https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1109/SP.2014.30
https://doi.org/10.1007/978-3-319-96881-0
https://www.usenix.org/conference/usenixsecurity15

References 177

Pippenger, N. and M. J. Fischer. 1979. “Relations among Complexity Mea-
sures”. Journal of the ACM. 26(2).

Poddar, R., T. Boelter, and R. A. Popa. 2016. “Arx: A strongly encrypted
database system.” IACR Cryptology ePrint Archive. 2016: 591.

Priebe, C., K. Vaswani, and M. Costa. 2018. “EnclaveDB: A Secure Database
using SGX”. In: 2018 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press.

Rastogi, A., M. A. Hammer, and M. Hicks. 2014. “Wysteria: A Programming
Language for Generic, Mixed-Mode Multiparty Computations”. In: 2014
IEEE Symposium on Security and Privacy. IEEE Computer Society Press.
655–670. doi: 10.1109/SP.2014.48.

Rivest, R. L., L. Adleman, and M. L. Dertouzos. 1978. “On Data Banks and
Privacy Homomorphisms”. In: Foundations of Secure Computation.

Rogaway, P. 1991. “TheRoundComplexity of Secure Protocols”.Massachusetts
Institute of Technology Ph.D. Thesis.

Sadeghi, A.-R., T. Schneider, and I. Wehrenberg. 2010. “Efficient Privacy-
Preserving Face Recognition”. In: ICISC 09: 12th International Conference
on Information Security and Cryptology. Ed. by D. Lee and S. Hong.
Vol. 5984. Lecture Notes in Computer Science. Springer, Heidelberg. 229–
244.

Schneider, T. andM. Zohner. 2013. “GMWvs. Yao? Efficient Secure Two-Party
Computation with Low Depth Circuits”. In: FC 2013: 17th International
Conference on Financial Cryptography and Data Security. Ed. by A.-R.
Sadeghi. Vol. 7859. Lecture Notes in Computer Science. Springer, Heidel-
berg. 275–292. doi: 10.1007/978-3-642-39884-1_23.

Shamir, A. 1979. “How to share a secret”.Communications of the ACM. 22(11):
612–613.

Shan, Z., K. Ren, M. Blanton, and C. Wang. 2017. “Practical Secure Computa-
tion Outsourcing: A Survey”. ACM Computing Surveys.

Shannon, C. E. 1937. “A symbolic analysis of relay and switching circuits”.
Massachusetts Institute of Technology Master’s Thesis.

https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1007/978-3-642-39884-1_23

178 References

Shaon, F., M. Kantarcioglu, Z. Lin, and L. Khan. 2017. “SGX-BigMatrix: A
Practical Encrypted Data Analytic Framework With Trusted Processors”.
In: ACM CCS 17: 24th Conference on Computer and Communications
Security. Ed. by B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu.
ACM Press. 1211–1228.

shelat, a. and C.-H. Shen. 2011. “Two-Output Secure Computation with
Malicious Adversaries”. In: Advances in Cryptology – EUROCRYPT 2011.
Ed. by K. G. Paterson. Vol. 6632. Lecture Notes in Computer Science.
Springer, Heidelberg. 386–405.

shelat, a. and C.-H. Shen. 2013. “Fast two-party secure computation with
minimal assumptions”. In: ACM CCS 13: 20th Conference on Computer
and Communications Security. Ed. by A.-R. Sadeghi, V. D. Gligor, and
M. Yung. ACM Press. 523–534.

Shi, E., T.-H. H. Chan, E. Stefanov, and M. Li. 2011. “Oblivious RAM
with O((log N)3) Worst-Case Cost”. In: Advances in Cryptology – ASI-
ACRYPT 2011. Ed. by D. H. Lee and X. Wang. Vol. 7073. Lecture Notes
in Computer Science. Springer, Heidelberg. 197–214.

Songhori, E. M., S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar.
2015. “TinyGarble: Highly Compressed and Scalable Sequential Garbled
Circuits”. In: 2015 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press. 411–428. doi: 10.1109/SP.2015.32.

Stefanov, E., M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas.
2013. “Path ORAM: an extremely simple oblivious RAM protocol”. In:
ACMCCS 13: 20th Conference onComputer andCommunications Security.
Ed. by A.-R. Sadeghi, V. D. Gligor, and M. Yung. ACM Press. 299–310.

Unbound Tech. 2018. “How to Control Your Own Keys (CYOK) in the Cloud”.
White Paper available from https://www.unboundtech.com.

Wagh, S., P. Cuff, and P. Mittal. 2018. “Differentially Private Oblivious RAM”.
Proceedings on Privacy Enhancing Technologies. 2018(4): 64–84.

Waksman, A. 1968. “A Permutation Network”. Journal of the ACM. 15(1).
Wang, X. S., Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi. 2014a. “SCO-

RAM: Oblivious RAM for Secure Computation”. In: ACM CCS 14: 21st
Conference on Computer and Communications Security. Ed. by G.-J. Ahn,
M. Yung, and N. Li. ACM Press. 191–202.

https://doi.org/10.1109/SP.2015.32
https://www.unboundtech.com

References 179

Wang, X. S., Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu. 2015a.
“Efficient Genome-Wide, Privacy-Preserving Similar Patient Query based
on Private Edit Distance”. In: ACMCCS 15: 22nd Conference on Computer
and Communications Security. Ed. by I. Ray, N. Li, and C. Kruegel: ACM
Press. 492–503.

Wang, X. S., K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and
Y. Huang. 2014b. “Oblivious Data Structures”. In: ACM CCS 14: 21st
Conference on Computer and Communications Security. Ed. by G.-J. Ahn,
M. Yung, and N. Li. ACM Press. 215–226.

Wang, X., T.-H. H. Chan, and E. Shi. 2015b. “Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound”. In: ACM CCS 15: 22nd
Conference on Computer and Communications Security. Ed. by I. Ray,
N. Li, and C. Kruegel: ACM Press. 850–861.

Wang, X., A. J. Malozemoff, and J. Katz. 2017a. “EMP-toolkit: Efficient
MultiParty computation toolkit”. https://github.com/emp-toolkit.

Wang, X., S. Ranellucci, and J. Katz. 2017b. “Authenticated Garbling and
Efficient Maliciously Secure Two-Party Computation”. In: ACM CCS 17:
24th Conference on Computer and Communications Security. Ed. by B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM Press. 21–37.

Wang, X., S. Ranellucci, and J. Katz. 2017c. “Global-Scale Secure Multiparty
Computation”. In: ACM CCS 17: 24th Conference on Computer and
Communications Security. Ed. by B. M. Thuraisingham, D. Evans, T.
Malkin, and D. Xu. ACM Press. 39–56.

Winternitz, R. S. 1984. “A Secure One-Way Hash Function Built from DES”.
In: IEEE Symposium on Security and Privacy. 88–88.

Wyden, R. 2017. “S.2169 — Student Right to Know Before You Go Act of
2017”. https://www.congress.gov/bill/115th-congress/senate-bill/2169/.

Xu, Y., W. Cui, and M. Peinado. 2015. “Controlled-Channel Attacks: De-
terministic Side Channels for Untrusted Operating Systems”. In: 2015
IEEE Symposium on Security and Privacy. IEEE Computer Society Press.
640–656. doi: 10.1109/SP.2015.45.

Yao, A. C.-C. 1982. “Protocols for Secure Computations (Extended Abstract)”.
In: 23rd Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press. 160–164.

https://github.com/emp-toolkit
https://www.congress.gov/bill/115th-congress/senate-bill/2169/
https://doi.org/10.1109/SP.2015.45

180 References

Zahur, S. and D. Evans. 2013. “Circuit Structures for Improving Efficiency of
Security and Privacy Tools”. In: 2013 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press. 493–507.

Zahur, S. and D. Evans. 2015. “Obliv-C: A Lightweight Compiler for Data-
Oblivious Computation”. Cryptology ePrint Archive, Report 2015/1153.
http://oblivc.org.

Zahur, S., M. Rosulek, and D. Evans. 2015. “Two Halves Make a Whole
- Reducing Data Transfer in Garbled Circuits Using Half Gates”. In:
Advances in Cryptology – EUROCRYPT 2015, Part II. Ed. by E. Oswald
and M. Fischlin. Vol. 9057. Lecture Notes in Computer Science. Springer,
Heidelberg. 220–250. doi: 10.1007/978-3-662-46803-6_8.

Zahur, S., X. S. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans, and
J. Katz. 2016. “Revisiting Square-Root ORAM: Efficient Random Access
in Multi-party Computation”. In: 2016 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press. 218–234. doi: 10.1109/SP.2016.21.

Zhang, Y., A. Steele, and M. Blanton. 2013. “PICCO: a general-purpose
compiler for private distributed computation”. In: ACM CCS 13: 20th
Conference on Computer and Communications Security. Ed. by A.-R.
Sadeghi, V. D. Gligor, and M. Yung. ACM Press. 813–826.

Zheng, W., A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I.
Stoica. 2017. “Opaque: An Oblivious and Encrypted Distributed Analytics
Platform”. In: NSDI. 283–298.

Zhu, R. and Y. Huang. 2017. “JIMU: Faster LEGO-Based Secure Computation
Using Additive Homomorphic Hashes”. In: Advances in Cryptology –
ASIACRYPT 2017, Part II. Ed. by T. Takagi and T. Peyrin. Vol. 10625.
Lecture Notes in Computer Science. Springer, Heidelberg. 529–572.

Zhu, R., Y. Huang, and D. Cassel. 2017. “Pool: Scalable On-Demand Secure
Computation Service Against Malicious Adversaries”. In: ACM CCS 17:
24th Conference on Computer and Communications Security. Ed. by B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM Press. 245–257.

Zhu, R., Y. Huang, J. Katz, and A. Shelat. 2016. “The Cut-and-Choose Game
and Its Application to Cryptographic Protocols.” In: USENIX Security
Symposium. 1085–1100.

http://oblivc.org
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1109/SP.2016.21

	Introduction
	Outsourced Computation
	Multi-Party Computation
	MPC Applications
	Overview

	Defining Multi-Party Computation
	Notations and Conventions
	Basic Primitives
	Security of Multi-Party Computation
	Specific Functionalities of Interest
	Further Reading

	Fundamental MPC Protocols
	Yao's Garbled Circuits Protocol
	Goldreich-Micali-Wigderson (GMW) Protocol
	BGW protocol
	MPC From Preprocessed Multiplication Triples
	Constant-Round Multi-Party Computation: BMR
	Information-Theoretic Garbled Circuits
	Oblivious Transfer
	Custom Protocols
	Further Reading

	Implementation Techniques
	Less Expensive Garbling
	Optimizing Circuits
	Protocol Execution
	Programming Tools
	Further Reading

	Oblivious Data Structures
	Tailored Oblivious Data Structures
	RAM-Based MPC
	Tree-Based RAM-MPC
	Square-Root RAM-MPC
	Floram
	Further Reading

	Malicious Security
	Cut-and-Choose
	Input Recovery Technique
	Batched Cut-and-Choose
	Gate-level Cut-and-Choose: LEGO
	Zero-Knowledge Proofs
	Authenticated Secret Sharing: BDOZ and SPDZ
	Authenticated Garbling
	Further Reading

	Alternative Threat Models
	Honest Majority
	Asymmetric Trust
	Covert Security
	Publicly Verifiable Covert (PVC) Security
	Reducing Communication in Cut-and-Choose Protocols
	Trading Off Leakage for Efficiency
	Further Reading

	Conclusion
	Acknowledgements
	References

